
Retrievability in IR

MS Project Report

Submitted in Partial Fulfilment of the Requirements

for the Degree of

Master of Science

by

Aman Sinha
5th Year BS-MS, 18MS065

Under Supervision of

Dr. Dwaipayan Roy
Department of Computational and Data Sciences

DPS Coordinator:

Prof. Rangeet Bhattacharyya
Department of Physical Sciences

to

Department of Physical Sciences

Indian Institute of Science Education and Research (IISER) Kolkata

Mohanpur - 741246, INDIA

May 2023

DECLARATION

I, Aman Sinha (Roll No: 18MS065), hereby declare that, this report

titled “Retrievability in IR” submitted to Indian Institute of Science Education

and Research Kolkata towards the partial requirement of Master of Science

in Department of Physical Sciences, is an original work carried out by me

under the supervision of Dr. Dwaipayan Roy and department coordinator Prof.

Rangeet Bhattacharyya and has not formed the basis for the award of any degree

or diploma, in this or any other institution or university. I have sincerely tried to

uphold academic ethics and honesty. Whenever a piece of external information or

statement or result is used then, that has been duly acknowledged and cited.

Kolkata - 741246 Aman Sinha

May 2023 18MS065

ii

Certificate

This is to certify that the work contained in this project report entitled “Retrievability in

IR” submitted by Aman Sinha (Roll No. 18MS065) to the Indian Institute of Science

Education and Research, Kolkata towards the partial requirement of Master of Science in

Department of Physical Sciences has been carried out by him under my supervision and

that it has not been submitted elsewhere for the award of any degree.

Dr. Dwaipayan Roy

Project Supervisor

IISER Kolkata

iii

ACKNOWLEDGEMENT

I wish to extend my sincere and heartfelt obligation towards everyone who helped

me see this project through till the end. First and foremost, I would like to

extend my profound gratitude to Dr. Dwaipayan Roy, my esteemed supervisor from

CDS department of IISER Kolkata. I am incredibly fortunate to have received his

guidance, valuable feedback, and unwavering encouragement throughout the course

of this research. Dr. Dwaipayan Roy’s expertise, patience, and insightful suggestions

have been instrumental in shaping this thesis. His constant support and belief in

my abilities have been a constant source of motivation for me. I am truly grateful

for his invaluable mentorship and unwavering commitment to my academic growth.

I am profoundly grateful to my parents for their unwavering support throughout

my master’s thesis. Despite the distance between us, their love and encouragement

have been invaluable. Knowing that they were taking care of themselves gave me

the peace of mind to focus wholeheartedly on my research. I am truly blessed to

have such dedicated and selfless parents. I dedicate this achievement to them with

heartfelt appreciation.

I would also like to express my heartfelt thanks to Priyanshu Raj Mall, Srujana

Mohanty, Abhisek Kar, Aditya Dutta for their steadfast support and time. I am

also grateful to the Indian Institute of Science Education and Research Kolkata for

providing the necessary resources and facilities to complete this project to the best

of my ability. To everyone mentioned above and those who may not be explicitly

named but have contributed in various ways, I offer my heartfelt gratitude and

deepest respect. Your contributions, whether big or small, have made a significant

impact on this thesis, and for that, I will forever be grateful.

Kolkata - 741246 Aman Sinha

May 2023

iv

Abstract

The rapid digitization of information has led to an unprecedented accumulation

of knowledge across various formats, making effective information retrieval essential

for accessing and utilizing this vast pool of information. In the field of Information

Retrieval (IR), search engines like Google, Bing, and DuckDuckGo play a pivotal role

in influencing our daily lives by presenting us with search results. With this influence

comes the responsibility to ensure unbiased retrieval of websites and documents.

Retrievability, a quantitative measure capturing a document’s ability to be retrieved

by a retrieval model regardless of the search query, plays a crucial role in assessing

retrieval effectiveness.

This master’s thesis investigates critical aspects of IR systems, aiming to

identify flaws, propose improvements, and uncover biases affecting their performance

evaluations. The research begins by exposing a major flaw in the artificial

query generation method used for Retrievability analysis. Building upon this

finding, an improved method is proposed, demonstrating enhanced correlation

for accurately assessing document retrievability. The study further uncovers a

new bias in the Relevance Judgement process, which favors highly retrievable

documents, potentially distorting the evaluation of IR systems. Recognizing this

bias is crucial for fair assessments, and future research should focus on mitigating

its impact. An examination of the RM3 technique reveals its ability to boost overall

performance but at the cost of making unique relevant documents less findable.

Balancing retrieval effectiveness with the retrieval of unique and relevant documents

becomes a vital consideration for practitioners and researchers. Additionally, a slight

correlation is observed between document ranks from PageRank and Retrievability

measures, suggesting a relationship between the two metrics. This finding opens

avenues for exploring their interplay and mutual reinforcement in future research.

Contents

List of Figures vi

List of Tables viii

1 Introduction 1

1.1 Motivation . 4

1.2 Goal . 8

1.3 Outline . 8

2 Information Retrieval Fundamentals 11

2.1 Information Retrieval System . 11

2.1.1 Definition . 12

2.1.2 IR Tasks . 13

2.1.3 Ad Hoc Retrieval . 13

2.2 Indexing . 14

2.2.1 Tokenization . 16

2.2.2 Normalization . 17

2.3 Retrieval Models . 20

ii

2.3.1 Boolean Retrieval . 20

2.3.2 Vector Space Model . 20

2.3.3 Probabilistic Models . 23

2.3.4 Language Models . 24

2.4 Evaluation of IR Systems . 26

2.4.1 Effectiveness and Efficiency 26

2.4.2 The Cranfield Paradigm . 27

2.4.3 Evaluation Measures . 28

2.5 Query Expansion . 33

2.5.1 Approaches . 33

2.5.2 Relevance Feedback . 34

2.5.3 Rocchio Algorithm . 35

2.5.4 Relevance Based Language Model 36

2.6 PageRank . 38

3 Retrieval Bias and Retrievability 41

3.1 Retrieval Bias . 41

3.2 Measuring Retrieval Bias . 44

3.3 Retrievability . 45

3.4 Retrievability Analysis Framework . 47

3.4.1 Query Set Generation . 47

3.4.2 IR System Configuration . 51

3.4.3 Calculating document Retrievability and global Retrievability 52

iii

4 Retrievability Experiments on TREC 678 corpus 55

4.1 Experimental Setup . 56

4.1.1 Hardware and Operating System 56

4.1.2 Dataset . 57

4.1.3 Retrieval Models . 58

4.1.4 Model Effectiveness . 58

4.2 Large Scale Retrieval Simulation . 59

4.2.1 Modified Query Generation Method 60

4.2.2 Retrievals and document retrievability 64

4.3 Trends in document retrievability . 64

4.3.1 Lorenz Curves . 65

4.3.2 Gini Coefficient . 68

4.3.3 Observations . 69

4.4 Bias in Relevance Judgement . 69

4.5 Retrievability after RM3 Query Expansion 71

5 Comparing Query Sets for Retrievability Analysis: Artificial vs.

Query Log-Based Queries 75

5.1 Dataset . 76

5.2 Corpus Preparation . 77

5.3 Real Query Set: AOL query log . 78

5.4 Artificial Query Sets: Query Generation 79

5.4.1 Azzopardi’s Query Generation Method 81

5.4.2 Improved Query Generation Method 82

iv

5.5 Retrievability Experiment . 84

5.5.1 Parallelization in Lucene . 85

5.6 Correlation between Retrievability scores from different Query Sets . 87

5.7 Discussion . 88

6 Correlation between Retrievability and PageRank 90

6.1 Motivation . 91

6.2 Methodology . 92

6.2.1 Challenges and Resolutions 93

6.3 Algorithm . 94

6.4 Results . 98

6.5 Discussion . 98

7 Conclusion and Future Work 100

7.1 Conclusion . 100

7.2 Future Work . 101

Bibliography 103

v

List of Figures

2.1 Graphical Representation of IR Process from [Roy, 2022] 14

2.2 Inverted index schematic adapted from [Manning et al., 2008, p. 7]. . 16

2.3 25 commonly used words from the Reuters-RCV1 corpus [Manning

et al., 2008, p. 26]. 18

2.4 Vector Space Model illustrated. (Image adapted from: Wikipedia,

2023c) . 21

2.5 Inverse relation between Precision and Recall 29

2.6 Rocchio algorithm illustration in vector space. (Image: Wikipedia,

2023b) . 36

3.1 Lorenz Curve illustrated [Image: Wikipedia, 2023a] 53

4.1 Examples from the generated unigram query set. 62

4.2 Examples from the generated bigram query set. 64

4.3 Lorenz Curve for TFIDF model. 65

4.4 Lorenz Curve for BM25 model. 66

4.5 Lorenz Curve for LMDir model. 66

4.6 Lorenz Curve for TFIDF, BM25 and LMDir models for

c = 100. 67

4.7 Plot of G vs c from the above table. 68

vi

4.8 Plot of count of documents on log-scale with r(d) values for set

of judged documents and set of non-judged documents. It can be

observed that the distribution for the judged documents in more

dominated by numerous documents of higher r(d) values, which

clearly shows that the set of judged documents has predisposition

towards higher r(d) values. 70

4.9 Lorenz Curve for BM25 + RM3 on TREC 678. 72

4.10 Plot of G vs c for BM25+RM3 search and BM25 search. 73

vii

List of Tables

2.1 Relevance and retrieved combinations [Manning et al., 2008, p. 155]. 30

4.1 Mean Average Precision (MAP), Mean Reciprocal Rank (MRR),

Precision at 5 and 20 documents (P@5, P@20) with respect to their

TREC queries . 59

4.2 Gini coefficient for all the retrieval models with different values of

c for TREC 678 collection. Pearson’s correlation coefficient ρ is

calculated between r(d) values of c = 10 and all other values of c.

The relationship between all the pairs of r(d) values is found to be

statistically significant, thus verifying the stability of retrievability

measure with respect to the choice of c. 68

4.3 Descriptive Statistics for r(d) values (for BM25 with c = 100) of

Judged and Non-judged documents. 70

4.4 Comparison between Gini coefficient calculated for BM25 and

BM25+RM3 on TREC 678. Pearson’s correlation coefficient ρ is also

reported in the similar combination as done in Table 4.2. 73

5.1 Distribution of Query Token Counts in the Final Filtered Queries

from AOL Query Log . 80

5.2 The frequency distribution for each N-grams in the Query Set created

using Improved Query Generation Method 83

5.3 POS Tag Patterns for N-grams . 84

viii

5.4 Number of queries in each query set for Wikipedia and WT10g

collections. 84

5.5 Correlation Coefficients between r(d) from AOL queries and

Azzopardi’s method generated artificial queries, both for c = 100. . . 87

5.6 Correlation Coefficients between r(d) from AOL queries vs Azzopardi

method generated artificial queries (QAzz) and r(d) from AOL queries

vs proposed method generated artificial queries (Qnew), both for c =

100. 87

6.1 Correlation Coefficients between PageRank of documents vs r(d) from

AOL queries (Qreal) and the proposed improved query generation

method created artificial queries (Qart) for c = 100. 98

ix

Chapter 1

Introduction

Throughout the ages, civilizations have generated and disseminated information

through diverse means and mediums. As time elapsed, the volume of information

produced has increased and has been preserved through a range of storage media.

An enduring difficulty in the management of information has been how to locate

relevant information that meets one’s informational needs. One way libraries have

tackled this challenge is by utilizing a categorical system, such as the Dewey Decimal

Classification system introduced in 1876 [Dewey, 1876], which enables information

seekers to track down pertinent information by navigating a series of categories.

Nevertheless, the exponential increase in information generation, particularly in

the last couple of decades, has rendered this traditional method of information

categorization insufficient for effectively organizing and retrieving the vast amounts

of information available.

This new challenge of finding relevant information led to the emergence of

the field of Information Retrieval (IR), which aims to organize, structure, and

provide access to information to facilitate searchers in locating the information

they need. The value of well-documented and informative content is negligible if

it cannot be retrieved promptly and accurately when required. In contemporary

times, information is available in various formats beyond textual information, and IR

research has expanded to encompass these diverse information types. Nevertheless,

textual information, including webpages, news articles, and patents, is still the most

commonly sought-after form of information. Therefore, systems were developed to

handle the large amounts of currently available information.

1

The emergence of initial Information Retrieval Systems (IR Systems) introduced

a new paradigm of storing documents that eliminated the need for strict

categorization for efficient retrieval. Instead, users could input a few keywords

as a query, and the IRS would retrieve a set of documents likely to contain the

information relevant to the search [Belkin, 1980; Sanderson, 2008]. An IR System

comprises two main components for retrieval: an index that represents the corpus

and a retrieval algorithm that has several parts. The first retrieval algorithms

were based on boolean retrieval [Van Rijsbergen, 1979]. However, these algorithms

returned a vast set of documents, making it impractical to examine each document

in the set. To tackle this issue, document ranking was introduced [Salton and

Yang, 1973], where documents were scored based on their relevance to the query.

A simple approach to scoring is to count the number of query term occurrences in

each document [Roelleke, 2013]. The document with the most occurrences of the

query terms was likely the most relevant and thus presented to the searcher first.

This way, the user would be able to swiftly locate the most pertinent document

in the top position, and subsequent documents were considered less relevant to the

given query. This search paradigm facilitated access to vast amounts of information,

as users could locate pertinent documents from vast collections by entering a few

keywords. As the sophistication of ranking systems increased, the responsibility

for users to construct effective queries diminished, with algorithms assuming the

task of inferring users’ information requirements and prioritizing the most pertinent

documents accordingly.

A significant portion of IR research has focused on assessing the efficiency and

performance of the proposed retrieval algorithms for IR systems. The Cranfield

evaluation approach [Cleverdon, 1991] became a standard method to evaluate an

IR System. This eventually led to the beginning of the Text Retrieval Conference

(TREC), a US government agency dedicated to creating test collections to facilitate

the evaluation of IR Systems [D. K. Harman, 1993]. This structured and systematic

approach to evaluation led to a surge in IR research, resulting in the development

of novel retrieval algorithms that were then tested and evaluated in a standardized

manner, allowing for comparison with state-of-the-art retrieval algorithms available

at that particular period. However, as retrieval and ranking algorithms became more

effective, it became increasingly difficult to fully understand how these algorithms

score documents and how the associated parameters affect the final document score.

For example, BM25 [Stephen E. Robertson et al., 1992] has multiple parameters

2

in its ranking function, and without a thorough investigation of the mathematical

underpinnings of the algorithm, it is challenging to discern how each parameter

influences the final score of a document. This issue became even more problematic

when the size of the collections which is used for evaluation grew, making it

impossible for the researchers to make informed judgments by manually analyzing

the results.

The assessment of IR system efficiency focuses on critical aspects such as CPU

usage, memory usage, and query completion time. These factors are fundamental in

determining the utility of a system, as high performance levels may be compromised

by excessive resource consumption or prolonged query completion times, which limit

its practical applications. Therefore, the evaluation of IR systems considers both

efficiency and performance criteria. In recent times, a new evaluation criterion has

emerged, namely, the retrievability bias associated with retrieval algorithms. This

evaluation approach seeks to determine whether a retrieval algorithm introduces any

biases in the selection of document irrespective of the query posed.

The issue of bias is widespread and prevalent across many domains. Recently,

search engines have emerged as a significant concern owing to the proliferation

of politically aligned entities, dissemination of fake or malicious news, and other

surreptitious agendas. The manifestation of search bias can take various forms,

including deliberate bias such as political alignment, and unintentional bias such

as algorithmic bias. The detection of intentional biases can be accomplished

by comparing the search results of various systems over time [Mowshowitz and

Kawaguchi, 2005]. However, such biases are challenging to counteract as they are

designed deliberately. The involvement of relevant authorities may be necessary

to mitigate them. In the context of IR, biases can sometimes be both positive or

negative. For instance, PageRank [Brin and Page, 1998] introduces a bias towards

highly linked documents, thereby favoring popular pages and boosting performance.

While retrieval algorithms are constructed to be biased or show preference towards

relevant documents, there is a possibility of unintentional biases arising that do not

assist in distinguishing between relevant and irrelevant documents.

Algorithmic bias denotes an inclination of an algorithm to prefer certain

documents or groups of documents at the expense of others, which results from

document characteristics that do not have a direct bearing on the relevance of the

document corresponding to the query. It is important to note that this definition

3

of algorithmic bias excludes intentional biases programmed into algorithms, such

as PageRank [Brin and Page, 1998]. Algorithmic bias pertains specifically to

the inadvertent negative biases that compromise the algorithm’s ability to discern

relevance, for instance, a bias favoring longer documents as they tend to contain a

greater number of terms [Sparck Jones, 1972]. This kind of bias can impede the

search system’s performance as less relevant documents may receive higher scores

owing to the algorithmic bias embedded in the retrieval algorithm. As a result, there

may be a decline in user satisfaction, as searchers would need to exert extra effort

to find the pertinent information, either by modifying their queries or exploring the

ranked list more thoroughly.

1.1 Motivation

Although evaluating bias in information retrieval (IR) systems is a relatively new

idea [Azzopardi and Vinay, 2008a; Azzopardi and Vinay, 2008b], the IR community

has long recognized the potential of algorithmic bias to affect retrieval algorithms,

dating back to the earliest models [Sparck Jones, 1972]. While biases were not

explicitly measured, the mathematical foundations of the retrieval algorithm often

exhibited the potential for bias to manifest in the function. One example of this was

TF.IDF, which tended to favor longer documents, leading to retrieval of irrelevant,

lengthy documents. To counter this, modifications were made to the algorithm

[Roelleke, 2013], resulting in Pivoted TF.IDF [Singhal et al., 1996], which permitted

users to adjust the degree of length normalization applied to document scoring,

thereby mitigating the length bias and enabling the algorithm to be utilized on a

wide range of document collections.

Retrievability was presented by Azzopardi and Vinay as a method for evaluating

the degrees of bias existing in a search system. The researchers [Azzopardi and

Vinay, 2008b] emphasized that any component of the retrieval procedure could

introduce bias, ranging from the retrieval algorithm to the collection itself. In

essence, retrievability examines each document within the collection based on its

ease or difficulty of retrieval, given a specific search system. The researchers initially

suggested retrievability using a transportation planning analogy. Picture yourself

at a central transport hub in a city, from which buses, trains, and other transport

means travel to numerous destinations. This symbolizes the search system, and as

4

a searcher, you can access it. You have a target location in mind, so you must

first determine whether it’s feasible to reach or come close to it using the available

transportation options. This is comparable to a searcher with an information

requirement and access to an Information Retrieval System (IRS). The searcher can

interrogate the system using an array of terms that best represent their requirements.

Each route in the transportation planning can be viewed as a search that a searcher

might initiate. You may opt to take the train to your destination initially and then

transfer to a bus later in the journey. This is akin to a searcher submitting a query

and then modifying that query based on the newly acquired information. In the end,

you’ll either arrive at your destination, abandon the attempt, or change to a new

destination that is more accessible. Searchers do the same by either locating the

information they need, giving up, or searching for new data. In the transportation

planning analogy, some destinations are easy to reach, while others are incredibly

difficult or impossible to access. Similarly, some documents in the collection are

simple to retrieve, while others are extremely challenging or unattainable through

the IRS provided to a searcher. The searcher can employ various strategies to find

pertinent information, but their level of control remains ultimately constrained by

the IR System which they are using.

Since the introduction of the retrievability measure, numerous studies have been

conducted to explore the degree of retrieval bias exhibited by various retrieval

models. Query expansion (QE) is a popular technique widely employed to enhance

the performance of information retrieval systems by appending supplementary terms

or concepts related to the user’s initial query. Nevertheless, the extent to which

query expansion affects retrieval bias is not yet comprehensively understood, and

additional research is necessary to ascertain whether query expansion can alleviate

or exacerbate retrieval bias. Although only two query expansion models have been

analyzed for bias in a preliminary investigation [Wilkie and Azzopardi, 2017], this

thesis intends to reproduce the results on several standard retrieval models and

conduct retrievability analysis on RM3, which is the most effective QE method in

the classical (non-neural network) domain of information retrieval. The Fairness

Hypothesis [Wilkie and Azzopardi, 2014] is still under debate and QE is one such

scenario where the hypothesis was observed to collapse for the studied two QE

methods. By studying the scenario for the RM3 QE method, this investigation

contributes to expanding and generalizing the observation to more QE methods,

providing a better understanding of the impact of QE on term selection from a

5

retrieval bias perspective.

An important concern in the realm of information retrieval is related to the

process of document pooling, which is used for generating relevance judgments.

Generally, this process entails the gathering of documents that have obtained high

rankings from multiple retrieval models for a given query [D. Harman, 1993]. These

documents are considered to represent the possible pool of the most pertinent

documents, based on the efficacy of the utilized retrieval models. Subsequently,

assessors evaluate solely these documents, which form the basis for the evaluation

of effectiveness in various workshops, such as TREC, CLEF, NTCIR and FIRE.

Thus, relevance judgment serves as a critical element in objectively assessing the

performance of different search models. Nevertheless, a potential issue arises when

the pool of documents employed in the relevance judgment is biased. If the retrieval

models used in the pooling process exclude relevant but less retrievable documents

from the pool, then the evaluation of retrieval models based on such relevance

judgments could unfairly penalize models that retrieve these documents. As a result,

retrieval models that frequently return significant but less retrievable documents at

the top ranks may exhibit lower performance in evaluations based on relevance

judgment, and retrieval models that agree with the biases of the retrieval models

utilized in the document pooling process may receive higher performance metrics

due to their better overlap with the relevance judgment documents. To investigate if

document pooling bias is actually there or not, this thesis examines the distribution

of retrievability scores for the judged documents as compared to the remaining

documents. Any tendency of the score distribution of the judged documents towards

higher scores would indicate bias in the document pool towards more retrievable

documents.

Retrievability analysis relies on an accurate estimation of a large subset of all

possible queries that are likely to be posed by users [Azzopardi and Vinay, 2008b].

An ideal approach would be to utilize a subset of the search log of a search system

over the target corpus since it contains all the possible queries that people are

interested in regarding the corpus. However, this search log is often unavailable

for retrievability analysis. As a result, an artificial query generation method based

on the Query Based Sampling approach is used, where N-grams are sampled from

corpus documents for various N. Most subsequent research that explores or employs

retrievability has used the artificial query generation method to create query sets

for retrievability analysis, rather than a real query log. However, it remains unclear

6

whether retrievability scores from an artificial query set constitute an acceptable

approximation of retrievability scores from a real query set sampled from a query

log. If the correlation between the two is found to be low, then a question arises

regarding which query set provides a more accurate estimate of the retrievability

bias of the IR system. Consequently, the validity of previous works that apply

retrievability analysis blindly to estimate retrieval bias without a correct query set

could come into question. Therefore to find out, this thesis aims to determine the

correlation of retrievability scores for documents using both real and artificial query

sets to investigate the robustness of the measurement against variations in the query

set used for retrievability analysis. Furthermore, an attempt is made to propose an

improved query generation method that enhances the correlation between the scores

obtained from artificial queries and those obtained from real queries.

The retrievability score of a document could be regarded as an accumulation of

the number of queries that the document could potentially answer, which implies

that the retrievability score reflects the usefulness of a document. Another measure

of usefulness, in terms of popularity, is the PageRank algorithm proposed by Brin

and Page [Brin and Page, 1998]. PageRank is utilized to evaluate a webpage’s

significance or pertinence by considering the quantity and caliber of links that refer

to it. The effectiveness of PageRank is due to its capacity to rank pages based on

their credibility and dependability, which has considerably advanced the precision

and suitability of search engine outcomes. As both measures aim to capture the

usefulness of documents, it is expected that they should be somewhat correlated,

since many documents will be useful in terms of both information coverage and

popularity. To investigate this, the extent of correlation between PageRank scores

and Retrievability scores over a corpus is computed. PageRank computation of

a document requires interlinking between the documents, which forms a graph

structure. Wikipedia is a large corpus with documents on diverse topics, and articles

refer to other articles within the Wikipedia, making it a rich source for interlinking

between the documents. WT10g [Bailey et al., 2003] is a standard TREC dataset

that also contains link information. The two corpora, Wikipedia and WT10g, are

chosen for the experiment. If the correlation between PageRank and Retrievability

scores is weak, then the combination of both scores can be tested to demonstrate

boosted effectiveness when used as prior document weights in the retrieval model’s

scoring function. To evaluate the performance, the relevance judgment present in

the WT10g dataset is utilized. By conducting this study, insights could be obtained

7

on how Retrievability and PageRank scores could be used to improve retrieval

performance, which could potentially benefit IR systems.

1.2 Goal

The aim of this thesis is to investigate the following:

1. Study the impact of query expansion on retrieval bias by comparing the

retrieval bias of standard retrieval models and a baseline query expansion

technique using retrievability analysis.

2. Investigate the presence of any bias in the document pooling process for

creating relevance judgments based on the distribution of retrievability scores

of documents.

3. How much correlation exists between retrievability scores obtained from

retrieval simulations using real query logs versus those generated artificially?

4. Improve the artificial query generation method to more accurately emulate

real-world queries.

5. What is the extent of correlation between PageRank scores and Retrievability

scores of the articles in the Wikipedia?

1.3 Outline

This report is organized as follows:

• Chapter 1 presents the motivation for this thesis, the goals and research

questions that it poses, and outlines the structure of this thesis.

• Chapter 2 briefs the necessary background knowledge to the field of

Information Retrieval (IR) to understand the works and discussions that will

follow in the subsequent chapters.

8

• Chapter 3 introduces the concept of retrieval bias, measures that attempt to

quantify such biases, and then presents in detail the Retrievability analysis,

which is one of the general methods to assess retrieval bias.

• Chapter 4 reproduces prior retrievability analysis results on standard retrieval

models using a different corpus. Then it studies the retrieval bias imposed

by a baseline state-of-the-art query expansion technique in contrast to its

performance gain. It also investigates the retrievability score distribution

of judged documents in the relevance judgment of the corpus and tries to

highlight the bias in the pooling of documents for judgment.

• Chapter 5 performs a retrievability analysis, which involves the examination of

two corpora using distinct query sets and the utilization of the BM25 retrieval

model. The primary objective is to compare the retrievability scores obtained

from artificially generated queries with those derived from a query log, with

the aim of assessing the viability of artificial queries for retrievability analysis.

The research findings indicate a lack of correlation between the retrievability

scores obtained from artificially generated queries and those derived from

the query log. Additionally, the proposed modified approach demonstrates

a higher correlation with the query log-based retrievability scores, suggesting

its potential as a more suitable method for query generation in situations where

a historical query log is unavailable for retrievability analysis on IR systems.

• Chapter 6 explores the relationship between PageRank and Retrievability by

analyzing two distinct document collections, Wikipedia and the TREC Web

Corpus. It presents the methodology employed to extract in-links and out-

links information from these corpora, as well as the computational challenges

associated with performing PageRank computations on large datasets. The

chapter will also present the PageRank algorithm used, along with the steps

taken to address the aforementioned challenges. The chapter concludes

with observations on the correlation between PageRank and retrievability,

contributing to a deeper understanding of link analysis algorithms and

information retrieval in large-scale document collections.

• Chapter 7 concludes the thesis. This thesis has addressed critical issues in the

field of IR systems, uncovering limitations and proposing improvements. The

flaws in artificial query generation for Retrievability analysis and the bias in

Relevance Judgement were identified, calling for more robust approaches and

9

fair evaluations. The impact of employing the RM3 technique was explored,

highlighting the trade-offs in retrieval effectiveness. Furthermore, a correlation

between PageRank and Retrievability measures suggested potential interplay.

These findings underscore the complexity of IR systems and the need for

ongoing research. Future work should evaluate the proposed improved method,

address bias, assess the impact of RM3 on finding unique relevant documents,

and explore the integration of retrievability measures into ranking algorithms.

These efforts will enhance search result quality and advance the effectiveness

of IR systems.

10

Chapter 2

Information Retrieval

Fundamentals

This chapter presents a comprehensive examination of the foundational knowledge

that readers should possess in order to comprehend the contents of this report. Its

primary objective is to provide a concise summary of information retrieval (IR)

systems, retrieval models, and evaluation methodologies, which constitute crucial

elements for comprehending the subsequent chapters’ content and discussions.

2.1 Information Retrieval System

Information Retrieval (IR) is an academic field that has a long-standing and well-

established history, dating back to the late 1940s. At its inception, a small group of

professionals were involved, with the primary objective of retrieving unstructured

text. The term “document” was frequently used interchangeably with “information”

to describe this process [Van Rijsbergen, 1979]. However, the emergence and

increasing popularity of the World Wide Web in recent decades has transformed the

landscape of IR. Currently, millions of people worldwide utilize IR daily, surpassing

traditional methods of information access, including structured database searches.

IR has broadened its scope to encompass retrieving data beyond plain text, such as

multimedia archives.

This development has generated a growing interest in IR as an academic field,

prompting researchers to revisit and enhance existing methods, propose novel ones,

11

and modify the representation and structure of information to enhance automatic

retrieval. The overarching objective of research in this field is to develop superior

methods to achieve the same objective, with evaluation playing a critical role in the

process [Manning et al., 2008].

2.1.1 Definition

Baeza-Yates and Ribeiro-Neto’s [Baeza-Yates, Ribeiro-Neto, et al., 1999] description

provides a commonly accepted explanation of what IR is, which is as follows:

“Information retrieval (IR) deals with the representation, storage,

organization of, and access to information items. The representation

and organization of the information items should provide the user with

easy access to the information in which he is interested.”

Another, a narrower, definition of IR is given by [Manning et al., 2008]:

“Information retrieval (IR) is finding material (usually documents) of

an unstructured nature (usually text) that satisfies an information need

from within large collections (usually stored on computers).”

Data Retrieval versus Information Retrieval

The fields of data retrieval and information retrieval in computer science are

closely linked, and to further clarify the definition of information retrieval, their

distinguishing characteristics and differences are presented.

A data retrieval system employs a synthetic language with a limited vocabulary

and syntax to retrieve data that has a clearly defined structure and semantics.

The query must provide a complete specification of the desired data, and even a

small mistake can result in a total failure of the process, as the system aims for total

matching where the document must satisfy every part of the query. Such a system is

suitable for a database where users can enter specific key terms like an identification

code. However, it is unable to address the issue of retrieving information in a

satisfactory manner, where the query only partially matches the document.

12

In contrast, information retrieval systems typically use natural language text

for the query, which may be incomplete. The primary objective of an information

retrieval system is not only to extract information from unstructured data but also

to evaluate its relevance to the query. This is necessary because, unlike database

searches, information retrieval systems do not have clear-cut hits or misses. Ideally,

such a system should retrieve all relevant documents while minimizing the number

of irrelevant ones, enabling users to quickly browse through a list of partly matching

ranked results and select those that meet their information needs [Baeza-Yates,

Ribeiro-Neto, et al., 1999; Belew, 2000].

2.1.2 IR Tasks

The principal task in IR is to provide relevant documents from a collection that

meet a user’s undiscriminating information needs, commonly called ad hoc retrieval.

The subject matter of information need is the area of interest that the user wishes

to gain further knowledge about. The user conveys their requirements to the system

by issuing a one-time query that they believe accurately reflects their needs. A

document returned by the system is considered relevant if the user perceives it to

contain information that is pertinent to their initial information need [Manning et

al., 2008].

Other tasks in IR include the retrieval of multimedia content such as speech,

music, images, and videos. In cross-language IR, the system attempts to retrieve

results in multiple languages for a query in one. Furthermore, routing, filtering, and

additional processing of already retrieved sets of information are also essential tasks

[Manning et al., 2008]. However, this thesis primarily focuses on the ad hoc retrieval

task for documents.

2.1.3 Ad Hoc Retrieval

The fundamental and standard interaction stages and elements of an ad hoc IR

system are depicted in Figure 2.1.

To begin with, it is essential to acquire all documents that will be indexed.

The initial step of this process involves pre-processing the document collection,

13

Figure 2.1: Graphical Representation of IR Process from [Roy, 2022]

which involves converting it into a format that the indexer can interpret. The

indexer subsequently dissects the documents into discrete units known as tokens

and may undertake certain normalization techniques such as case-folding, stop-word

elimination, equivalence classing, stemming, and lemmatization. These tokens are

then incorporated into the index.

After completing those steps, a user can initiate a search for documents to satisfy

their information needs. However, as the imprecise nature of the user’s query cannot

be directly understood by the IR system, the user must attempt to articulate their

information need via a query and submit it to the system. Typically, the same

normalization techniques employed for the documents are also utilized for the query

to enable accurate matching. Subsequently, the IR system retrieves documents that

partly match the query. With the aid of retrieval models, these documents can be

ranked based on their similarity to the query. Ultimately, a ranked list of documents

is returned to the user. Optionally, some IR systems offer the possibility of refining

the list of results by providing relevance feedback [Baeza-Yates, Ribeiro-Neto, et al.,

1999, pp. 9-10].

2.2 Indexing

Performing linear scans on documents is the most fundamental approach to

document retrieval, which is also referred to as grepping. This technique is named

14

after the Unix command grep. While this method suffices for simple querying on

small collections, it presents several limitations [Manning et al., 2008, p. 19]:

• The efficiency of this method relies on the size of the document collection, as

its performance diminishes with the collection’s growth.

• This method is not suitable for complex query matching operations.

• Ranked retrieval is not possible with this method, which is essential for

obtaining the most relevant answer to an information need.

To avoid the laborious task of searching through all documents for every query, it

is commonly recommended to index them beforehand. One approach to accomplish

this is by constructing a term-document matrix, wherein each document is assigned

a unique documentID and the mapping is recorded in a lookup table. The rows

and columns of this matrix contain vectors that represent the terms present in

each document and the documents that contain each term, respectively. However,

constructing such a matrix for large collections with a vast vocabulary results in

a matrix with bulky dimensions. This is primarily because the matrix includes an

abundance of redundant information, such as document-term combinations that do

not exist and must be marked with 0’s.

To address this issue, a solution to build an inverted index. Witten et al. [Witten

et al., 1999, p. 109] suggest that the inverted index is the most efficient method for

text applications. The inverted index only stores term-document combinations that

actually occur and consists of two essential components: a dictionary and postings.

The dictionary, also called a lexicon, encompasses all the terms in the collection.

Each term has a corresponding list that contains information about the documents

in which the term appears, and the position of the term in the document can be

optionally stored. This information also automatically indicates the frequency of

the term, as the number of positions can be summed to obtain that information.

Each item in such a list is referred to as a posting, and the combination of all lists

is called postings. The fundamental concept of the inverted index is illustrated in

Figure 2.2.

In order to create an inverted index, four main steps are required as described

by [Manning et al., 2008, p.19]:

15

Figure 2.2: Inverted index schematic adapted from [Manning et al., 2008, p. 7].

• Collection of all documents that require indexing

• Extraction of tokens from the text of each document to create a token list

• Linguistic pre-processing of these tokens to create indexing terms

• Indexing of the documents for each term to create the inverted index

To enhance the optimization of the process, termIDs can be used instead of the

terms in the dictionary. This involves assigning a unique number to each term

and creating a mapping between the terms and their corresponding termIDs. This

approach is similar to the one used for documents.

2.2.1 Tokenization

Tokenization is the process of dividing a document into smaller semantic units known

as tokens. Tokens are composed of character sequences from the original document

and are useful for subsequent processing. A group of tokens that contain the same

character sequence is referred to as a type.

During tokenization, certain characters, such as punctuation marks, can be

omitted, while some character combinations present challenges for the tokenization

process. For instance, apostrophes in English have diverse semantic meanings,

including word contractions and possession indications. Similarly, hyphenation is

used to group words, bond nouns, or split up vowels in words. These challenges

highlight the significance of language familiarity to the tokenizer, which may utilize

classifiers to recognize languages based on character subsequences. Additionally,

16

certain character sequences, such as multi-word city names, programming languages

like C++, and URLs for web pages, must be treated as a single token.

German, for example, poses a different challenge where compound nouns are

written without spaces, necessitating the use of a compound-splitter to separate them

into individual tokens. This issue is further compounded in some Asian languages

such as Chinese, Korean, and Japanese, where text is written without white spaces

to separate words, and thus, word segmentation must be performed first. However,

this process can introduce errors since word boundaries are not always apparent

[Manning et al., 2008, pp. 22-28].

2.2.2 Normalization

Prior to the incorporation of tokens into the dictionary of an IR system, it is common

to apply several normalization techniques to eliminate surface-level disparities and

amalgamate multiple tokens into a unified form. This practice often enhances the

accuracy of query results by facilitating better matches between user queries and

the indexed data. Typically, the normalization methods used in index generation

are also employed in query processing to achieve this objective.

Case-folding

One frequently utilized normalization method is the process of transforming all

letters to lowercase, referred to as “case-folding.” This technique results in tokens

with capital letters at the start of a sentence being altered to the same form as

they would have in the middle of a sentence. However, implementing this approach

carries some drawbacks, such as the loss of information. In particular, distinguishing

between common and proper nouns becomes impractical, and acronyms may merge

with a word of similar spelling but an entirely distinct meaning. To circumvent

this information loss in English texts, a viable alternative is to utilize true-casing.

This approach only converts tokens to lowercase when they are at the beginning

of a sentence or are entirely or primarily in uppercase, such as in a headline.

Nevertheless, given that most users do not prioritize proper capitalization and

submit their queries in all lowercase, case-folding is typically the optimal solution

[Manning et al., 2008, p. 30].

17

a is an it and its are of as on at that be

the by to for was from were has will he with in

Figure 2.3: 25 commonly used words from the Reuters-RCV1 corpus [Manning et
al., 2008, p. 26].

Stop Word Removal

Frequently used terms may not effectively aid in the selection and differentiation

of relevant documents. Such terms are known as stop words, since the text

processing ceases upon encountering them, and they are not incorporated into the

dictionary. Typically, the creation of a stop list involves ranking the terms based on

their frequency of occurrence in the document collection and appending the most

prevalent ones to the list. Collection frequency denotes the total number of instances

in which a term appears throughout the document collection. Additionally, it is often

necessary to modify the stop list manually to tailor it to the semantic field of the

documents. The utilization of a stop list has the benefit of significantly reducing

the number of postings required for storage in the index [Croft et al., 2010, p. 64].

Figure 2.3 illustrates an example stop list of commonly used words in English texts.

In most cases, the absence of stop words from the index has a negligible impact

on search queries, as long as the stop list is thoughtfully created and a minimal

number of words are excluded. Nevertheless, there are exceptions, such as when

searching for song titles or verses or executing phrase queries. These searches may

consist of very common words, causing critical parts to be omitted. For instance, if

the example stop list in figure 2.3 is applied to the renowned soliloquy from William

Shakespeare’s play, The Tragedy of Hamlet, Prince of Denmark, which includes the

line ”To be or not to be,” the search would solely involve the terms ”or” and ”not.”

In IR systems, stop lists historically comprised a sizeable number of terms,

ranging from 200 to 300. Presently, it is more common to employ brief lists of

approximately ten stop words or none at all, as modern systems seldom encounter

performance or storage issues [Manning et al., 2008, p. 27].

18

Stemming and Lemmatization

The purpose of both stemming and lemmatization is to transform variant forms of a

term into a standardized base form. Stemming involves a less sophisticated but faster

technique, whereby the ends and derivational suffixes of terms are truncated in an

effort to achieve this goal. The most widely utilized stemming algorithm for English

texts is the Porter Stemmer, which utilizes a series of rules in five sequential phases

to abbreviate the term. Whereas, Lemmatization entails a more comprehensive

morphological analysis of the term, which results in the return of the lemma, or base

form, typically found in a dictionary. Although lemmatization is a more intricate

process, it usually does not result in substantial enhancement in information retrieval

performance for IR objectives when compared to the simpler approach of stemming.

It is important to acknowledge that the effect of both methods on query performance

is not uniform and can differ depending on the nature of the queries. Some queries

may gain benefits from the use of these methods while others may not.

Equivalence Classing

Following the stemming process, certain tokens are merged since they share the

same meaning. However, there are instances where two tokens have some slight

differences but should still be considered a match. For instance, a user searching for

’USA’ might also want results that include ’U.S.A.’, which only differs in superficial

characters. To resolve such inconsistencies, equivalence classes are created, usually

named after one of the tokens within the set. This enables retrieval of documents

containing any member of the set when searching for one of the terms. The creation

of mapping rules that eliminate specific characters allows for the easy creation of

equivalence classes. Nonetheless, determining when to add characters to these rules

can be ambiguous since the rules are implicit.

Alternatively, one can utilize synonym relationships between tokens, which are

manually curated in a list and can be expanded. During index creation, if a

document contains the term ’lift’, it can also be indexed as ’elevator’. Alternatively,

the tokens can be indexed as they are, and the synonym list considered when

processing query terms. This method is commonly used and elaborated in section

2.5, which deals with query expansion [Manning et al., 2008, p. 28].

19

2.3 Retrieval Models

The effectiveness of information retrieval systems is largely dependent on the type

of retrieval model employed. In this section, an overview of the prominent retrieval

models is provided, along with an explanation of the key term weighting techniques

that they utilize.

2.3.1 Boolean Retrieval

Boolean Retrieval is the earliest and most commonly used model for information

retrieval. Despite decades of academic research promoting ranked retrieval systems,

commercial information providers exclusively implemented Boolean Retrieval until

the early 1990s. In Boolean model, binary weights are assigned to index terms, which

are either present in a document (assigned a binary value of 1) or absent (assigned

a value of 0). This model disregards other factors, making it impossible to grade

the relevance of documents. Queries in this model use simple semantics and employ

operators such as ‘AND’, ‘OR’, and ‘NOT’ to connect index terms.

However, this simple approach has a significant disadvantage of relying on exact

matching, resulting in binary decisions when retrieving documents. This means

that the number of retrieved documents is solely dependent on the query and can

lead to an overwhelming number of results that exceed the user’s capacity to review

comprehensively. Moreover, the aforementioned operators are often inadequate for

complex information needs, making it challenging to express them accurately. As a

result, extended Boolean models were developed, which incorporate operators that

consider the proximity of terms [Baeza-Yates, Ribeiro-Neto, et al., 1999, pp. 25-27],

[Manning et al., 2008, pp. 14-15, 109].

2.3.2 Vector Space Model

This approach acknowledges the limitations of Boolean Retrieval and presents a

framework that enables partial matching and the computation of relevance grades

by identifying documents with the highest similarity corresponding to the query.

This approach generates a ranked list of results, unlike Boolean Retrieval.

20

Figure 2.4: Vector Space Model illustrated.
(Image adapted from: Wikipedia, 2023c)

The fundamental concept of the Vector Space Model involves representing each

document as a vector in a multidimensional vector space, where each dimension

corresponds to a term in the dictionary. The presence or significance of terms

is represented using coefficients, which can be binary values or non-binary term

weights that are commonly scaled. Queries are also represented in the same vector

space as vectors, usually as a list of terms without the use of a query language like

Boolean retrieval models. Figure 2.4 illustrates this concept in a two-dimensional

vector space with two terms, where document 1 has the highest similarity to the

query.

There are two common techniques for determining the similarity of two

documents. The first involves calculating the distance between the endpoints of

the respective document vectors. However, this approach has a shortcoming, as it

can yield significant distance values for documents that share highly similar content

but differ greatly in length. The second method, which is commonly used, is cosine

similarity represented by the cosine value of the angle between the query vector q⃗

and document vector d⃗ in the following equation:

21

similarity(q, d) =
q⃗ · d⃗
|q⃗||d⃗|

(2.1)

Equation 2.1 is comprised of a numerator that denotes the inner product of two

vectors, and a denominator that is the result of the product of their Euclidean norm.

The denominator normalize the length of each vector, which addresses a limitation of

the initial approach as mentioned in [Turtle and Croft, 1992], [Baeza-Yates, Ribeiro-

Neto, et al., 1999, pp. 27-30], [Manning et al., 2008, pp. 120-121].

TF

The straightforward method of assigning a scaled weight to individual terms within

a document involves equating their weight with the frequency of their occurrence

in said document. This method is commonly known as term frequency (TF) and is

expressed as tft,d where t represents the term and d represents the document. Under

this scheme of weighting, the ordering of terms is unimportant (referred to as a bag

of words), and all terms are treated equally with respect to their contribution to the

relevancy of a query. However, certain terms have limited or no ability to distinguish

between different documents, thereby rendering this approach problematic due to

its uniform weighting scheme.

TF-IDF

It is common to use a variation of tf (term frequency) called term frequency-inverse

document frequency (tf-idf) weight, rather than raw term frequency. This is because

some terms are frequently occurring and should be considered as such. To address

this, the inverse document frequency is used to decrease the weight of common

terms throughout the entire collection and increase the weight of rare terms. The

calculation for tf-idf weight for a term t in a document d is shown in equation 2.2.

The total number of documents in the collection is represented by N , and the total

number of documents containing the term t is represented by dft.

tfidft,d = tft,d × log
N

dft
(2.2)

22

However, the standard tf-idf method can be biased towards large absolute term

frequencies because it does not normalize them relative to the document length. To

mitigate this issue, normalized tf-idf uses the document length |d| [Manning et al.,

2008, pp. 117-119].

2.3.3 Probabilistic Models

When utilizing either the boolean or vector space model for IR, the system possesses

an imprecise semantic calculation of index terms. Consequently, with only a single

query, the system can merely provide a conjecture as to whether a document

contains content that is germane to the user’s information need since the IR system’s

comprehension of the information need is indeterminate. To address this issue,

probability theory can be utilized for reasoning under uncertainty to assess the

probability of a document being pertinent. Several retrieval models, such as the

Binary Independence Model and the Okapi BM25 Model, are based on probabilistic

principles and are exemplified in [Manning et al., 2008, p. 219].

Binary Independence

The Binary Independence model, being one of the oldest probabilistic retrieval

models, employs binary term weights, which are equivalent to Boolean values.

Binary vectors of the form x⃗ = (x1, ..., xn) represent both the queries and the

documents. If a document contains a specific term t, then xt is set to 1, leading

to a reduction of many potential documents to the same representation. This

model assumes that terms occur independently within documents, disregarding

any association between them. Although this assumption is incorrect, the model

still performs adequately on most collections, although it has not been adapted for

modern full-text retrieval [Manning et al., 2008, pp. 222-223].

Okapi BM25

The Okapi BM25 is a non-binary model that utilizes BM25 as its weighting

scheme. It was created with the objective of developing a probabilistic model for

full-text retrieval that would consider term frequency and document length while

23

minimizing the number of additional parameters [Jones et al., 2000]. The model was

introduced in the 1990s and quickly gained popularity, particularly in many TREC

test collections, as it demonstrated excellent performance. Additional information

on TREC can be found later in the chapter. The Okapi BM25 is currently one of

the most commonly used models, and various versions of the formula exist. One

widely utilized variant is presented in equation 2.3.

BM25(q, d) =
∑
t∈q

log

[
N

dft

]
(k + 1) · tft,d

k
(
(1− b) + b · (Ld

Lave
)
)
+ tft,d

(2.3)

The formula presented includes two tuning parameters, b and k, along with two

document length metrics. Ld is the document length, while Lave is the average

document length of the entire collection. The value of b can range from 0 to 1,

with 0 representing no scaling of document length, and 1 indicating full scaling of

the term weight by the document length. Meanwhile, k scales the document term

frequency, with 0 indicating no scaling, which corresponds to a binary model. It is

important to note that the range of k extends from 0 to infinity [Manning et al.,

2008, pp. 232-234].

2.3.4 Language Models

The typical strategy for a user to formulate an effective query involves expressing

their information need using language likely to appear in relevant documents. This

fundamental approach is directly implemented by language models, which build

a probabilistic language model Md for each document d instead of modeling the

probability of relevance of a document to the query. The documents are then ranked

based on the probability P (query|Md) of generating that query. To accomplish

this, probability values must be assigned to language terms. Various models exist

to achieve this by constructing probabilities over sequences of terms, such as the

unigram, bigram, and multinomial unigram models. A language model over A can

be represented by a function that places a probability measure over strings s, where

the total probability always equals 1 [Manning et al., 2008, pp. 237-238]:

∑
s∈A

P (s) = 1 (2.4)

24

Unigram

The unigram language model described in equation 2.5 disregards any contextual

cues and the arrangement of terms within the text, thereby functioning as a “bag of

words” model. Its basic nature is attributed to the fact that it estimates each term

t individually, rendering it the most elementary form of a language model [Manning

et al., 2008, pp. 117, 240].

Punigram(t1t2t3t4) = P (t1) · P (t2) · P (t3) · P (t4) (2.5)

Bigram

One instance of a more intricate model that accounts for the preceding context in its

evaluation is the bigram language model as shown in equation 2.6. In this model,

the likelihood of each term is dependent on the preceding term [Manning et al.,

2008, p. 240].

Pbigram(t1t2t3t4) = P (t1) · P (t2|t1) · P (t3|t2) · P (t4|t3) (2.6)

Multinomial Unigram

The unigram and bigram models lack consideration of the multinomial probability of

a bag of words as they don’t sum over all possible token orderings. The incorporation

of the multinomial coefficient Cq in equation 2.7, however, can account for this,

leading to the development of the standard multinomial unigram language model

for a given query q as expressed in equation 2.8, with Md representing the model for

a specific document d.

Cq =
Ld!

tft1,d! · tft2,d!...tftM ,d!
(2.7)

P (q|Md) = Cq

∏
V ∈q

P (t|Md)
tft,d (2.8)

In instances where all terms in a query are absent from a document, the similarity

score may result in zero. To address this issue, term smoothing is commonly

25

employed in these language models. This approach not only prevents the zero

problem but also implements a significant portion of the term weighting component

[Bennett et al., 2008], [Manning et al., 2008, pp. 241-244]. Additionally, for a

specific bag of words, the coefficient Cb would simply be a constant.

2.4 Evaluation of IR Systems

The assessment of search performance in a objective manner holds significant

importance as a fundamental element of IR research.

2.4.1 Effectiveness and Efficiency

The advancement of Information Retrieval (IR) research relies heavily on the

experimental nature of the field, and progress is largely dependent on the exploration

of new ideas. However, empirical evidence has shown that new ideas and potential

enhancements for the search capabilities of a system, which may seem promising in

theory, often have little to no impact when put to extensive testing. Thus, to make

noticeable progress, continuous evaluation and experimentation with alternative

techniques is essential to differentiate between useful changes and those that are

redundant [Singhal et al., 2001].

The effectiveness and efficiency of an IR system are two ways to evaluate

its performance. Effectiveness measures the system’s ability to locate relevant

information, and if a definition of relevance is available, it can be determined by

comparing the ranking produced by the IR system in response to a query with the

ranking created by user relevance judgments. Conversely, Efficiency measures the

amount of time or space required by the system to generate that ranking.

Generally, IR research focuses first on improving the effectiveness of the system.

Once a new technique is found to achieve this goal, resources are allocated to

create an efficient implementation. This approach is commonly adopted because

the primary objective is to identify relevant information. A retrieval system that

produces quick results but without accuracy would be of little use in most situations

[Van Rijsbergen, 1979, p. 112], [Croft et al., 2010, pp. 269-271].

26

2.4.2 The Cranfield Paradigm

Cleverdon’s evaluation methodology facilitated the development of test collections,

which included a series of documents, queries with descriptions of relevant document

types, and a list of documents that had been evaluated by assessors and categorized

as relevant or not [Cleverdon, 1991]. These categorized documents for each query are

commonly referred to as qrels (query relevance) and they indicate whether or not a

document is relevant to the given query. Initially, all documents could be evaluated

for each query, but as collection sizes grew, this approach became impractical.

Consequently, system pooling, which involves multiple systems running the queries

and a subset of top documents from each system being judged for relevance by

assessors, became the preferred approach. Although this method is not exhaustive,

researchers have attempted to develop collections without system pooling [Sanderson

and Joho, 2004] or using different pooling techniques [Zobel, 1998]. Biases

introduced by pooling, such as length biases [Losada and Azzopardi, 2008], have

been acknowledged by researchers and compared to a more comprehensive coverage

approach [Buckley, Dimmick, et al., 2006; Buckley, Dimmick, et al., 2007].

Nevertheless, system pooling is still the standard method for most test collections,

and it remains the accepted norm in the community for creating collections.

The standard paradigm for evaluation involves the following steps:

• The system indexes the set of documents in the test collection.

• The system is issued with a set of curated queries to be evaluated.

• The top 1000 ranked results from the system are recorded.

• The relevance of the ranked results for each query is determined by comparing

them with the qrels for that query.

• The system’s performance is calculated based on the previous step’s results.

This approach provides a controlled environment for testing and comparing different

systems to determine which is best suited for a given task. However, it is not immune

to potential pitfalls, such as overfitting the model to maximize performance on one

collection, which may lead to poor performance on other collections with different

statistics.

27

Standard Test Corpora

The implementation of a standardised evaluation methodology resulted in the

establishment of TREC, a workshop or conference that furnishes researchers with

high-quality test collections for a variety of retrieval purposes and topics. These

collections are utilized in TREC Tracks, a competition that enables researchers to

assess the efficacy of their models and compete with one another. To appraise the

retrieval runs, TREC employs common evaluation metrics based on the qrels. The

qrels contain lists of relevant and non-relevant documents for most topics, enabling

a system to be penalized for retrieving a document that is known in the relevance

judgment to be non-relevant. The system’s score is typically not influenced by

the remaining documents that are unjudged and do not appear in the qrels for a

particular topic, and hence do not contribute to the enhancement or penalty of the

score.

Basic Requirements for Evaluation

In order to evaluate the effectiveness of an IR system using standard practices, the

following three components are necessary:

• Document Collection: A comprehensive compilation of documents that is

representative of the corpus of information that the IR system is designed

to search.

• Query Set: A set of queries that expresses the user’s information needs and

simulates real-world search scenarios.

• Relevance Judgments: A set of binary labels that assesses the relevance of

each query-document pair. These judgments are made by human assessors

and serve as a benchmark for measuring the performance of the IR system.

2.4.3 Evaluation Measures

The last phase in the evaluation process, which involves the application of an

evaluation metric, necessitates a detailed explication due to the existence of a vast

28

Figure 2.5: Inverse relation between Precision and Recall

array of evaluation metrics. In this context, we will expound upon some of the most

preeminent metrics, as well as some lesser-known metrics.

Precision and Recall are widely accepted metrics for evaluating the effectiveness

of retrieval systems and their ability to meet information needs. These two measures

are often inversely related, making it impossible to achieve the best value for both

simultaneously. Figure 2.5 depicts a typical relationship between the two, where the

slope of the curve may vary depending on the collection and retrieval systems used,

but the general pattern remains consistent. The ideal outcome is situated at the

upper-right corner of the plot, where both Precision and Recall are maximized.

To consolidate Precision and Recall into a single value, F-measure can be utilized.

While these three values are originally expressed as measures between 0 and 1, it is

common practice to express them as percentages. In ranked retrieval settings, Mean

Average Precision is a single measure that combines Precision and Recall. However,

all of these metrics require relevance judgments, which can be incomplete. In such

cases, Binary Preference may be used. Retrievability is another metric that does not

require any relevance judgments, and it will play a central role in the experiments

conducted in the practical section of this thesis.

Unranked retrieval refers to when an IR system returns a set of unordered

documents for a given query. Four possible combinations of retrieval state and

29

relevant not relevant
retrieved true positives (TP) false positives (FP)

not retrieved false negatives (FN) true negatives (TN)

Table 2.1: Relevance and retrieved combinations [Manning et al., 2008, p. 155].

document relevance exist, as outlined in Table 2.1.

Accuracy

Accuracy, which refers to the fraction of correct classifications done by an IR system,

is mathematically expressed in equation 2.9.

Accuracy =
TP + TN

TP + FP + FN + TN
(2.9)

Although frequently employed to evaluate machine learning classification problems,

this approach is typically unsuitable for IR systems. This is primarily due to the

heavily imbalanced nature of IR data, where less than 0.1 percent of documents

are pertinent to a given query. In fact, an IR system’s accuracy can be artificially

inflated by simply labeling all documents as non-relevant, a practice that would not

serve the user’s interests, as they anticipate the retrieval of relevant documents (true

positives). Generally, users are content as long as their information requirements are

met, even if some of the returned documents require scrutiny but are not pertinent

(false positives) [Manning et al., 2008, pp. 155-156].

Precision

Precision is a metric utilized to determine the proportion of pertinent documents

among the ones retrieved by the IR system, concerning a given query. In equation

2.10, it is evident that the computation of Precision necessitates knowledge of the

relevant documents and the total number of retrieved documents. Nevertheless,

a circumstance can arise where an IR system returns only one relevant document

despite the presence of a significant number of relevant documents in the collection.

In such cases, the Precision value can still be 100 percent, but the result set may not

be satisfactory. Hence, to avoid such situations, Precision is often used alongside

30

Recall, as per the recommendations provided in [Manning et al., 2008, pp. 154-155].

Precision =
TP

TP + FP
(2.10)

Recall

Simply maximizing Recall is not always a worthwhile approach, as it can result in

100 percent Recall being achieved by the system returning all documents from the

collection as the result set. Although this method includes all relevant documents,

it essentially disregards the query.

Recall is a metric that measures the ability of a retrieval system to

successfully retrieve documents from a collection that are relevant to the query.

This measurement requires knowledge of relevance, retrieved and non-retrieved

documents. Recall ranges from 0 to 1 and is defined by Equation 2.11.

Recall =
TP

TP + FN
(2.11)

An ideal IR system should possess high Recall and Precision values, which means

it should retrieve as many relevant documents as possible while only retrieving a

small number of non-relevant ones. Although one approach is to maximize both

values, this does not always represent the optimal combination for the user’s needs

or the system’s purpose. Therefore, another balance may be more favorable for

achieving the desired outcome.

To simplify comparisons between different IR systems, the breakeven point is a

single value that can be used. This point is where Precision and Recall are equal

and is usually achieved by tuning the IR system’s parameters [Manning et al., 2008,

pp. 154-156, 161].

F-Measure

An approach to balancing Precision and Recall is through a measure called F-

measure. This measure is calculated as a weighted harmonic mean of the two, with

the equation outlined in 2.12. By adjusting the value of β, where β < 1 emphasizes

31

Precision (P) and β > 1 emphasizes Recall (R). The default value of β is 1, which

equally weights both Precision and Recall, known as the balanced F-measure or F1,

short of Fβ=1 [Manning et al., 2008, p. 156].

F =
(β2 + 1)PR

β2P +R
(2.12)

Mean Average Precision

Currently, search engines commonly employ ranked retrieval, whereby the top k

documents deemed relevant for a query are returned as a result list. Users tend to

focus on the beginning of this list, and this behavior can be illustrated via Precision-

Recall Curves. Mean Average Precision (MAP) is the most widely accepted measure

used to express the quality of ranked retrieval systems. Specifically, for a given

query, the Average Precision is calculated by averaging the Precision values for each

relevant document found among the top k retrieved documents. A high Average

Precision value indicates that many relevant documents are present at the top of

the retrieved list. To obtain the MAP, this process is repeated for multiple queries,

and the resulting Average Precision values are averaged. Equation 2.13 demonstrates

this calculation, where {d1, ..., dmj
} represents the set of relevant documents for a

given query qj ∈ Q, and Rjk denotes the set of ranked results up until document dk

is reached [Manning et al., 2008, pp. 159-160].

MAP(Q) =
1

|Q|

|Q|∑
j=1

1

mj

mj∑
k=1

P (Rjk) (2.13)

As the MAP values for different information needs can vary significantly within the

same system, they are often utilized to compare a system with others using a single

information need [Manning et al., 2008, p. 161].

Binary Preference

Binary Preference (bpref) measure can be employed to evaluate incomplete relevance

judgments. This metric determines a preference relation of the judged documents,

indicating whether the retrieved documents are relevant or not. In accordance with

equation 2.14, bpref is computed by taking into account relevant documents r ∈ R

32

set of all relevant documents and n is a member of the first R non-relevant documents

retrieved by the IR system. Generally, bpref is an effective measure for evaluating

IR systems, but it may not work optimally when the number of relevant documents

is very limited, as noted in [Buckley and Voorhees, 2004].

bpref =
1

R

∑
r

(
1− |n ranked higher than r|

min(R,N)

)
(2.14)

2.5 Query Expansion

Furnas et al [Furnas et al., 1987] conducted a study indicating that individuals tend

to use the same language to describe an object only a small percentage of the time,

referred to as ”word mismatch.” In the realm of information retrieval, this poses

a significant issue, as a document may not explicitly contain the terms present

in a search query. Nevertheless, the document may be pertinent to the query’s

underlying information need. If a relevant document lacks the specific terms used in

a query, it will not be retrieved. The purpose of query expansion is to address this

query-document mismatch by broadening the search query through the inclusion of

words or phrases with similar meanings or some other statistical relationship to the

relevant document set.

To overcome this issue, users frequently attempt to refine their queries manually.

In this section, we explore methodologies in which a system can assist with query

refinement, either entirely automatically or with the involvement of the user.

2.5.1 Approaches

With the use of query expansion, users have the ability to provide additional input on

the query terms themselves, rather than solely relying on the resulting information.

Particularly for IR systems utilized on the internet, alternate but related queries

are often suggested to the user. The generation of these alternate suggestions is

commonly accomplished through the use of a thesaurus, which contains synonyms

or semantically related subjects. Query expansion can also be automated by adding

synonyms from the thesaurus to the query for each query term. This process can

enhance the amount of relevant documents retrieved without the need for user input.

33

Manual and automatic methods exist to create a thesaurus. In a manual

approach, editors can maintain a list of canonical terms for each concept, similar

to traditional libraries where subject indices include a vocabulary of possible

synonyms or related terms. This method is commonly used in well-resourced

domains. Alternatively, a thesaurus can be automatically generated through the

use of statistical data on term co-occurrences in a collection of documents from a

specific domain. Another automatic approach to suggest query alternatives to a

new user is to exploit the manual query reformulation attempts of users who have

previously used the IR system. To perform this query log mining, a large number of

generated queries and users are necessary, making it a viable method for web search

systems [Manning et al., 2008, pp. 189-192].

2.5.2 Relevance Feedback

The concept of relevance feedback (RF) relies on the premise that users may struggle

to create an effective query if they are not familiar with the collection. Therefore,

they are given the opportunity to engage with the retrieval process to enhance the

final list of results. This process involves several steps, as follows:

• The user submits a brief and straightforward query to the system.

• The system produces an initial list of results.

• The user provides feedback by marking some of the results as relevant or

irrelevant.

• Based on the feedback received, the system generates an improved

representation of the user’s information needs.

• The system presents an updated result list to the user.

The relevance feedback process may be repeated through multiple iterations,

following the last three steps to further refine the results. This approach is

particularly beneficial in image searches where the user may find it challenging to

express their needs in a few terms but can quickly evaluate the results. However,

users may not find the relevance feedback process popular since they may not wish

to invest additional time refining their query or providing feedback. Additionally, it

34

may be challenging to understand why a specific feedback choice has impacted the

next result set.

To address the issue of users not engaging explicitly, modified versions of

relevance feedback have been developed. Blind relevance feedback assumes that the

top-ranked documents in the result list are relevant and utilizes this assumption to

generate feedback data that can feed the feedback loop. Implicit relevance feedback

analyzes user actions such as clicking on a returned document to read it and adjusts

the ranking based on that indirect feedback [Baeza-Yates, Ribeiro-Neto, et al., 1999,

pp. 117-118], [Manning et al., 2008, pp. 178, 185-188].

The central concept behind relevance feedback involves the utilization of terms or

expressions extracted from documents that have been marked as relevant, to refine

the query. Conversely, irrelevant documents may also furnish negative cues that can

be leveraged to facilitate query reformulation. Relevance feedback comes in three

primary forms:

1. Explicit relevance feedback: Here, the system user explicitly designates a

few top-ranked documents as either relevant or irrelevant to their information

need.

2. Implicit relevance feedback: In this scenario, users do not overtly mark

documents. Rather, documents viewed by users serve as feedback, and the

information gleaned from such views is used to modify the query.

3. Pseudo-relevance feedback: In this mode, no user interaction is required.

It is presumed that the k top ranked documents are relevant, and the IR system

utilizes the reformulated query derived from these pseudo-relevant documents

to optimize its performance.

2.5.3 Rocchio Algorithm

The Rocchio algorithm constitutes a practical application of relevance feedback

for query expansion in the field of IR. Its theoretical foundation rests upon the

vector space model (Figure 2.6). Its primary objective is to identify a query vector

that optimizes the degree of similarity with pertinent documents and concurrently

reduces the level of similarity with non-relevant documents [Rocchio Jr, 1971].

35

Figure 2.6: Rocchio algorithm illustration in vector space. (Image: Wikipedia,
2023b)

The Rocchio relevance feedback is mathematically written as equation 2.15:

Q⃗m = αQ⃗0 + β
1

|Dr|
∑

Dj∈Dr

D⃗j − γ
1

|Dnr|
∑

Dk∈Dnr

D⃗k (2.15)

Where Q⃗0 represents the original query vector, Q⃗m is the modified query vector, and

Dr and Dnr represent the sets of relevant and non-relevant documents, respectively,

the values of the weights α, β, and γ determine the direction and distance of the

modified query vector from the original query, relevant documents, and non-relevant

documents. When a large number of judged documents are available, a higher weight

for β and γ may be desired for the modified query vector to move closer to the

centroid of relevant documents and further away from the centroid of non-relevant

documents, starting from the original query vector Q⃗0.

2.5.4 Relevance Based Language Model

For a considerable amount of time, statistical language models have been employed

and investigated. These models serve as a means of generating text and have

historically been extensively used in the realm of speech recognition.

36

RLM

Ponte and Croft introduced the Language Modelling framework of information

retrieval in their paper “A language modeling approach to information retrieval”

[Ponte and Croft, 2017]. The crux of this framework lies in its attempt to model the

query generation process as a random sampling from one of the document models.

The documents are then ranked based on the likelihood of observing the query as

a random sample from the respective document model. Lavrenko et al’s Relevance

Based Language Modelling (RLM), presented in [Lavrenko and Croft, 2017], may

be regarded as a query expansion technique that operates within the language

modelling framework. Their approach proposes a novel method of estimating word

probabilities in relevant documents without the use of any training data. The

probability of observing a word w in the relevant set R, P (w|R), is approximated

by the probability of co-occurrence between the word w and the query, P (w,Q).

The top few words ranked according to P (w|R) are then selected as the expansion

terms.

The probability ranking principle, famously advocated by Robertson in [Stephen

E Robertson, 1977], stipulates that optimal performance can be achieved by ranking

the documents according to the posterior probability that they belong to the relevant

class R. Robertson [Stephen E Robertson, 1977] also demonstrates that ranking

the documents based on the odds of their being observed in the relevant class

is equivalent to this method. We can, therefore, rank our documents using this

principle by:
P (D|R)

P (D|R)
∼

∏
w∈D

P (w|R)

P (w|R)

Additionally, an estimation of the probability of selecting a term w from the set R,

represented as P (w|R), is derived through approximation by

P (w|R) ∼ P (w,Q)

P (Q)

The joint probability of observing word w along with query terms Q is denoted as

P (w,Q), while P (Q) represents the query prior probability.

Under the assumption that the words q1, q2, q3, and so on in the query, and the

words w in the relevant documents, are sampled independently and identically from

the top retrieved document, given a query Q = {q1, q2, ...} and a set M of documents

37

from the initial retrieval, then

P (w,Q) =
∑
D∈M

P (D)P (w,Q|D)

P (w,Q|D) = P (w|D)
∏
q∈Q

P (q|D)

P (w,Q) =
∑
D∈M

P (D)P (w|D)
∏
q∈Q

P (q|D) (2.16)

where,

•
∏

q∈Q P (q|D) : Maximum likelihood estimate of q in D

• P (w|D) : Maximum likelihood estimate of w in D

• P (D) : Prior probability of selection of the document.

RM3

In practical application, the combined use of the Relevance-based Language Model

and Query Likelihood Model, as proposed by [Abdul-Jaleel et al., 2004], is commonly

employed. As noted by the authors, the Relevance model provides insight into the

behavior of returned documents but does not take into account the original query.

To preserve the information contained in the original query, the authors suggest

linearly interpolating the Relevance model with the original query model.

RM3, a mixture model of Relevance based language model and query likelihood

model:

P ′(w|R) = αP (w|R) + (1− α)P (w|Q) (2.17)

where, P (w|Q) =
tf(w,Q)

|Q|

2.6 PageRank

PageRank is a link-based ranking algorithm developed by Brin and Page [Brin

and Page, 1998], which determines the importance of a webpage based on the

quantity and quality of links it receives from other webpages. The fundamental

38

assumption underlying PageRank is that more important websites are likely to

receive a greater number of links from other websites. The algorithm generates

a probability distribution that represents the likelihood of a random surfer arriving

at any given webpage by clicking on links.

Multiple link connections from one page to another are treated as a single link,

and links from a page to itself are disregarded. The damping factor, typically set to

around 0.85, plays a crucial role in the PageRank algorithm. This factor accounts

for the likelihood that a random surfer may stop following links and instead jump

to a random webpage. It prevents the algorithm from getting trapped in cycles of

infinite link traversal.

The essence of PageRank can be understood through a model of a random surfer

who, after several clicks, eventually reaches the desired webpage and then randomly

transitions to another webpage. PageRank value assigned to a page reflects the

probability that the random surfer will land on that page by clicking on a link.

Conceptually, PageRank can be interpreted as a Markov chain where pages represent

states, and links between pages represent transitions. Each transition is considered

equally probable.

Mathematically, the PageRank equation can be expressed as follows:

PR(pi) =
1− d

N
+ d

∑
pj∈M(pi)

PR(pj)

L(pj)

In this equation, p1, p2, ..., pN represents the pages under consideration. M(pi)

represents the set of pages that link to pi, and L(pj) denotes the number of outbound

links on page pj. N represents the total number of pages.

The PageRank values correspond to the entries of the dominant right eigenvector

of the modified adjacency matrix. The matrix is rescaled to ensure that the sum of

each column adds up to one, making PageRank an elegant metric. The eigenvector

is represented as:

R =


PR(p1)

PR(p2)
...

PR(pN)



39

where R is the solution of the equation:

R =


(1− d)/N

(1− d)/N
...

(1− d)/N

+ d


ℓ(p1, p1) ℓ(p1, p2) · · · ℓ(p1, pN)

ℓ(p2, p1)
. . .

...
... ℓ(pi, pj)

ℓ(pN , p1) · · · ℓ(pN , pN)

R

In this equation, l(pi, pj) represents the ratio between the number of links outbound

from page pj to page pi and the total number of outbound links on page pj. If pj

does not link to pi, the adjacency function l(pi, pj) is 0. Additionally, the elements

of each column in the matrix sum up to 1, ensuring the matrix is stochastic. This

formulation of PageRank resembles a variant of eigenvector centrality commonly

employed in network analysis.

One of the primary drawbacks of PageRank is its bias towards older pages. New

pages, even if they are of high quality, tend to have fewer links unless they are part

of an existing densely connected site, such as Wikipedia. This limitation can result

in slower recognition and ranking for newer webpages, hindering their visibility in

search engine results.

40

Chapter 3

Retrieval Bias and Retrievability

This chapter provides an introduction to the concept of Retrieval Bias in Information

Retrieval (IR), along with a brief review of previous attempts to measure it. The

chapter then transitions to the discussion of Retrievability, a more recent measure

aimed at quantifying retrieval bias in IR systems. The thesis primarily employs

Retrievability as a measure of retrieval bias, and thus, this chapter will provide a

detailed analysis of its definition and associated analytical methods.

3.1 Retrieval Bias

Bias is the propensity to show partiality toward a particular individual or group,

particularly for unjustifiable reasons, although this may also encompass biases that

are viewed as legitimate. The definition of bias is multifaceted and can generate

controversy within society, particularly when it pertains to racial or gender bias.

Nonetheless, this topic is crucial to numerous fields beyond IR. For instance, the

machine learning industry is currently examining the challenges presented by biases

identified in algorithms that are influenced by the data they learn from [Zehlike

et al., 2017]. The use of black box machine learning algorithms, which are becoming

increasingly prevalent, can result in discrimination lawsuits when predictions are

made based on characteristics such as sexuality, gender, or race [Hajian et al., 2016].

Similarly, information retrieval (IR) systems can face comparable consequences and

accusations, as demonstrated by one of the Presidents of the United States, who

41

accused Google of manipulating search results to malign his reputation, a task that

Google appeared to have no difficulty in accomplishing.

The above discussed definition of bias can be applied to retrieval, where certain

developments in the history of IR can be deemed as biased, but still have a positive

impact on performance in specific contexts. These biases are integrated into the

system’s design, as observed in algorithms such as PageRank [Brin and Page, 1998]

and HITS [Kleinberg, 1999], which utilize the hyperlink structure of the web to

enhance the relevance score of web pages based on their popularity. Although

discriminatory algorithms intentionally designed to discriminate have surfaced,

they are typically used alongside traditional retrieval algorithms. When referring

to retrieval bias, however, we do not consider these intentional biases from our

definition. Hence, we define retrievability bias as unintentional bias that generally

has an unfavorable effect on performance.

The issue of bias in IR is a long-standing concern, with evidence of underlying

biases present in retrieval algorithms documented as far back as the earliest retrieval

models, as shown by [Sparck Jones, 1972]. The goal of improving retrieval algorithms

has been motivated, in part, by the need to eliminate biases from the process

and improve system performance. Singhal’s PTF.IDF model [Singhal et al., 1996]

provides a prime example of this development, as it introduced a pivot to TF.IDF

that allowed for parameterizing the length normalization of the model. By adjusting

the model accordingly, the inherent length bias, which tends to favor long or

short documents based on collection statistics, can be mitigated against, leading to

improved performance. The development of less biased models has been an iterative

process that has resulted in the creation of models that are provably less biased

than their predecessors. However, demonstrating that a model or its configuration

is less biased than others has been challenging due to the lack of a measure until

2008. Previous attempts to quantify bias, such as those focused on web search

[Mowshowitz and Kawaguchi, 2005], were limited by the vastness of the web at that

time. Their method involved pooling a selection of web retrieval systems and issuing

a common set of queries to each, recording the results of each system for each query

to create an ideal ranking. The authors then compared the systems’ rankings with

the ideal ranking to determine how far the system deviated from the ideal and,

therefore, how biased the system was. Although this method had some merits, such

as its focus on peer comparison, it did not address bias in a broader sense, as it

assumed that a collection of systems could create an unbiased ranking, which may

42

not be the case given that commercial search engines may be influenced by business

and political interests. Thus, a measure for quantifying bias was still lacking.

Until the publication of Vinay et al.’s (2006) work [Vinay et al., 2006] on

retrievability, there was no generally accepted method for quantifying bias in

information retrieval (IR). Additionally, the process of evaluating IR performance

was not immune to flaws. One example of this is when selecting and adjusting

an algorithm for live use on a collection, which is commonly done without having

any relevance judgements available for that specific collection. To address this, it is

customary to first test and adjust the algorithm on a similar collection with relevance

judgements before applying it to the working collection. However, this practice has

the potential to lead to overfitting because the test collection may differ from the

working collection in terms of size, domain, or structure, rendering any tuning efforts

ineffective. Overfitting occurs when an algorithm is optimized for collection statistics

that do not represent the working collection, resulting in poor performance when the

algorithm is applied to the working collection. Unfortunately, this can be difficult to

detect, as evaluating the algorithm is challenging and involves reviewing queries and

rankings. However, if an IR algorithm were tuned to minimize retrievability bias

(assuming a strong negative correlation between bias and performance), it would

be possible to avoid the overfitting risk by tuning the algorithm on the working

collection using retrievability analysis, which does not require a test collection.

In performance evaluation, biases can arise despite the risk of overfitting. Pool

bias, in particular, is a significant concern in collection creation. This bias arises

due to the process of system pooling, which involves creating a pool of documents to

be judged for each query using past retrieval algorithms. This method helps reduce

the number of documents that need to be reviewed by judges. However, using

previous algorithms means that any biases they hold are now included in the pool.

Consequently, judges may be subject to a biased pool, leading to biased judgments.

Losada and Azzopardi investigated this phenomenon in terms of length biases and

found that commonly used test collections exhibited strong length biases. This effect

can be cumulative as each new collection is created, and successful algorithms from

previous collections contribute to the pool, potentially contributing biases each year.

Our study will delve further into this concept to determine if performance evaluations

are genuinely biased from the outset.

43

3.2 Measuring Retrieval Bias

Retrievability can be compared to navigability metrics, which are frequently used

to quantify the accessibility of nodes in a graph by traveling along its edges [Zhang

et al., 2004], as it is rooted in transportation planning that is reliant on graph theory

[Azzopardi and Vinay, 2008a]. One common usage of navigability metrics, which

is similar to retrievability, is to evaluate how easily one can navigate through a

web graph and visit pages by following existing links. To convey this information,

measures such as PageRank and HITS were popular [Brin and Page, 1998; Kleinberg,

1999], but these were limited to collections with explicit links between documents

that could be browsed. Azzopardi, Wilkie, and Russell-Rose attempted to quantify

the findability of a webpage within its host site by employing a combination of

navigability and retrievability measures [Azzopardi, Wilkie, et al., 2013; Wilkie

and Azzopardi, 2013a]. The authors aimed to assess the structure of a website

using this combination of measures, encompassing both browsing and searching

aspects of website navigation. PageRank and HITS were utilized as navigability

measures, while BM25 was employed as the retrieval model. The findings from these

assessments were then combined, and the resulting findability scores were correlated

with usage logs of the website being evaluated. While some correlation was observed,

it appeared that the users’ information needs were the primary driver behind website

usage. However, the measure was noted to have the potential to identify pages that

were challenging to locate but still received substantial traffic, which could serve as

guidance for website restructuring. In a similar study, Azzopardi et al. [Azzopardi,

English, et al., 2014] developed a tool that provided a rating of a page’s retrievability

based on the content of the page. The tool issued terms from the content to a

retrieval system and calculated the page’s retrievability from the results obtained.

Additional metrics related to navigability that are comparable to retrievability

are reachability and hubness. Sabetghadam et al. define reachability as the

ease with which a document can be accessed using a graph traversal algorithm

through a network of interconnected documents [Sabetghadam et al., 2015]. While

retrievability measures the ease with which a document can be retrieved from a

collection, reachability addresses the same issue in a different context. Reachability

is a measure of whether a document can be accessed at all by following links within

the graph, limiting the number of steps taken. Similarly, hubness also involves

nodes in a graph [Taha, 2015]. Hubness is concerned with high-dimensional spaces,

44

such as musical similarity, and the effect of minor variations in the graph on

the outcomes [Gasser et al., 2010]. In high-dimensional spaces, a hub document

is one that is frequently retrieved not because of its similarity but because it

is closer to the mean. In such cases, all nodes should be located near the

surface of a hypersphere, and a single node that is slightly positioned towards

the mean becomes similar to a significant number of documents. Taha et al.

suggest either eliminating hub documents [Taha, 2015] or combining features to

reduce hubness [Flexer et al., 2010]. Azzopardi and Vinay have used the idea

of eliminating hub documents to investigate retrievability [Azzopardi and Vinay,

2008b]. Instead of removing the most retrievable documents, they removed the

least retrievable documents and analyzed the impact on performance. The authors

discovered that a substantial portion of the collection could be removed from the

index before any significant reduction in performance occurred. These measures,

including retrievability, illustrate the notion that certain areas of a collection may

be challenging to access.

3.3 Retrievability

Azzopardi and Vinay originally introduced the concept of “retrievability” as an

analogy to public transport planning in their 2008 paper [Azzopardi and Vinay,

2008a]. They viewed the documents in a collection as destinations that the user

wishes to reach, with the retrieval system serving as a central transport hub enabling

access to all possible destinations. In the context of retrieval, the user poses a query

relevant to their information need to reach their desired document, whereas in the

transport planning analogy, the user takes a bus or train to reach their destination.

The authors acknowledged that despite the ideal scenario of being able to retrieve

any document with a relevant query, this was not always the case due to various

factors.

Retrievability is an evaluation metric that focuses on individual documents

within a collection, and quantifies how easily each document can be retrieved. It can

also be used to determine the degree of bias present in a retrieval system towards a

particular collection. To ensure the computation of retrievability is not influenced

by external factors, the methodology is designed to focus on the collection, retrieval

algorithm, and its configuration (such as parameters). The mathematical notation

45

for calculating retrievability is provided as follows:

r(d) ∝
∑
q∈Q

Oq · f(kdg, {c, g}) (3.1)

where Q represents the set of all possible queries and q is a specific query within

that set, Oq refers to the probability of selecting that query. Despite its importance,

Oq has not been thoroughly investigated in existing literature. The retrieval of a

document d for a query q is determined by its rank kdq, and f(kdq, {c, g}) represents
the corresponding access function that indicates the degree of retrievability of d for

q at rank cut-off c with discount factor g. To determine the overall retrievability

of d, we sum the product of Oq and f(kdq, {c, g}) over all queries in the set Q.

Due to the impracticality of testing all possible queries, a vast array of queries is

automatically generated from the collection. Essentially, the measure captures the

idea that the higher the number of queries that retrieve d before the rank cut-off c,

the more retrievable document d is considered to be.

The cumulative scoring model is the most simplified method for computing

document retrievability. This model utilizes an access function, denoted by f(kdq, c),

which assigns a score of 1 to a document d if it appears in the top c results for a query

q, and a score of 0 otherwise. Alternatively, the gravity-based model incorporates

a discount factor g to determine the score a document receives based on its rank.

In this model, a document returned at a higher rank will receive a greater score

than one returned at a lower rank. A cut-off parameter c can still be employed with

the gravity-based model, which simulates the user’s tendency to focus on the top

results of a search query. This behavior can lead to position bias, where users are

less likely to click on lower-ranked results as they scan the search results list. As an

illustration, when a user searches for information, they may examine the first ten

documents listed in the search results. However, as they scroll down the ranking,

they are less likely to select a result that appears further down due to the position

bias. This means that a document ranked number 10 is less easily retrievable than

the one at rank 1. To obtain a cumulative measure, we can analyze a sufficiently

large cross section of queries and count how many times a document d was returned

above a certain rank, c. On the other hand, the gravity measure provides a more

precise indication of a document’s retrievability to a user.

The principal application of the retrievability’s theory has been to measure the

46

degree of bias that a system configuration creates over a collection of documents.

Nevertheless, retrievability is assessed on a document-to-document basis, and as

Equation 3.1 demonstrates, the outcome of performing a retrievability analysis is

the retrievability scores for every document. To transform this set of retrievability

scores into a single score indicating bias, approaches from political science have been

employed. Azzopardi and Vinay summarized and quantified bias using the Gini

Coefficient, which is an income inequality measure used to measure the inequality

(in our sense, bias) of the distribution of income or wealth across the population

of a country, region, or the group [Gastwirth, 1971]. Gini Coefficient calculates

inequality by arranging a population in ascending order of their income and plotting

the cumulative distribution of income over the ascending ordered population. The

extent of deviation of this distribution from the Lorenz Curve reflects how unequal

the distribution is. A distribution that approaches the Lorenz Curve indicates that

the wealth/income is distributed equally throughout the population. However, the

farther the distribution is from the Lorenz Curve, the more biased the distribution

is. In the worst-case scenario, one individual would receive all of the wealth, while

everyone else would receive nothing. In terms of retrievability bias, the population

represents a collection of documents, and the total income or wealth represents the

sum of the retrievability score of each document in the collection.

3.4 Retrievability Analysis Framework

Several studies have employed the concept of retrievability, leading to the

establishment of a standard methodology for conducting retrievability analyses. This

methodology comprises a set of fundamental stages that can be flexibly adapted to

fit the specific context of the research question. The approach can be broken down

into five primary stages, namely: generation of the query set, configuration of the

system, execution of the query set, computation of document retrievability, and

summarization of retrievability outcomes.

3.4.1 Query Set Generation

The initial step in a retrievability analysis is typically the generation of a query

set, provided that the collections used have already been indexed. This step is

47

of paramount importance, given that the estimation of retrievability hinges on it.

As per Equation 3.1, the most ideal calculation of r(d) would require the use of

all possible queries, denoted by Q. However, issuing all conceivable queries is an

impossible task; hence, Q is represented by an extensive set of queries [Azzopardi

and Vinay, 2008b]. Frequently, this query set is automatically derived from the

collection itself [Azzopardi and Vinay, 2008b; Bashir and Rauber, 2009a; Bashir and

Rauber, 2009b; Chen et al., 2017; Ganguly et al., 2016; Lipani et al., 2015; Noor and

Bashir, 2015; Pickens et al., 2010; Traub et al., 2016; Wilkie and Azzopardi, 2013a;

Wilkie and Azzopardi, 2013b; Wilkie and Azzopardi, 2014; Wilkie and Azzopardi,

2015], using an extraction method similar to that employed by Jordan [Jordan et

al., 2006], which identifies the terms contributing most to the set’s entropy. A

common approach involves the extraction of bigrams from a collection of text. This

is done by sliding a window across the text, and saving each bigram that appears

a specified number of times. The bigrams are then ranked and a predetermined

number of the top-ranked bigrams are selected to create a query set of significant

size [Azzopardi and Vinay, 2008b; Wilkie and Azzopardi, 2013b]. Azzopardi and

Vinay’s approach was initially based on the method outlined by Callan and Connel

[Callan and Connell, 2001]. The authors generated a set of queries, which included

single term queries, formed by selecting each term in the vocabulary that appeared

at least 5 times and using it as a query, and bi-term queries, formed by selecting

each bigram in the collection that appeared at least 20 times. The list of bigrams

was truncated at 20 million, and each query was issued to the system to estimate its

retrievability. This method created query sets of 1,797,520 and 2,881,230 queries for

the Aquaint and .Gov collections, respectively. Azzopardi and Bache later followed a

similar methodology to generate separate query sets for the AP and WSJ collections

by ranking the top 100,000 collocations in each collection [Azzopardi and Bache,

2010].

A frequently employed approach involves the production of n-grams from a given

collection. This method entails the identification of all terms that occur with

a frequency exceeding a predetermined threshold in each document, followed by

the creation of permutations from these terms [Bashir and Rauber, 2009a; Bashir

and Rauber, 2009b; Bashir and Rauber, 2009c; Bashir and Rauber, 2010a; Bashir

and Rauber, 2010b; Bashir and Rauber, 2011; Bashir and Rauber, 2017; Noor

and Bashir, 2015]. Bashir’s work is particularly focused on extracting queries

from the claim section of patent documents, which functions as an abstract for

48

each patent and provides a concise summary of its content. Bashir and Rauber

employed the controlled query generation (CQG) technique [Jordan et al., 2006] in

their research on identifying the most and least retrievable patents in a collection

[Bashir and Rauber, 2009b], as well as in their investigation of pseudo relevance

feedback [Bashir and Rauber, 2009b]. They employed two different methods of

CQG to create two distinct sets of queries for the same collection. In their first

approach, they emulated the method used by patent examiners when conducting a

patent invalidation procedure. Specifically, they extracted all terms from the claims

section of the patents and then combined the most frequent terms (up to a certain

threshold) into two, three, and four-term queries. Their second method of query

generation was centered on document relatedness. Similar to the first approach,

they generated queries by extracting terms from the claims section of documents,

but instead of focusing on a single document, they first clustered documents using

k-nearest neighbors and then generated queries from the combined claims sections

of all documents in the cluster.

In a later study by Bashir and Rauber [Bashir and Rauber, 2010a], the

relationship between retrievability and recall was examined by generating four

subsets of queries for evaluation purposes. To accomplish this, they employed a

technique that involved extracting each term, bigram, trigram, and 4-term that

appeared multiple times in a document. As a result, they obtained four subsets of

queries, ranging from around 30,000 to slightly less than 2.5 billion queries. This

extensive analysis was conducted on the TREC Chemical Retrieval Track, which

involved using numerous queries. The query generation method used by the authors

was designed to model how expert searchers generate queries. In the domain of

prior art, expert searchers use the claims section of a patent to generate queries that

retrieve any patent making similar claims, thus locating the most likely candidates

for conflicts of interest. While this method is effective for prior art search, it may

not be well-suited to other domains, as few have a section similar to the claims

of a patent. In a subsequent study on the same track, [Bashir and Khattak,

2014; Bashir and Rauber, 2011] employed the same query generation method as

their earlier work. However, they appear to have used a much smaller subset of

the queries generated, with the largest set comprising approximately 116 million

queries. They also excluded 2-term combination queries, only issuing 3 or 4-term

queries. The authors additionally noted that they eliminated any terms (before the

combinations) with a document frequency exceeding 25% of the collection [Bashir

49

and Rauber, 2014].

In a distinct approach to retrievability, Bashir’s research explores efficient

techniques to estimate retrieval bias without the need for query generation. Bashir’s

study employs document features instead of issuing queries to estimate retrieval bias

[Bashir, 2014]. To accomplish this, Bashir identifies specific document features such

as the collective TF.IDF score of all the terms present in the document.

Azzopardi et al conducted an alternative approach to query extraction by

extracting queries from a single page [Azzopardi, English, et al., 2014]. The purpose

of this method was to assess the retrievability of individual pages by issuing a set of

queries derived from one page to the system and measuring the frequency at which

this page was returned. Samar et al combined Azzopardi’s approach [Azzopardi

and Vinay, 2008b] with their own novel technique, which involved using the anchor

text of hyperlinked web archive documents they were analyzing to generate queries

[Thaer Samar et al., 2018; TMH Samar, 2017]. Samar’s method of generating

query sets from page content differed slightly from previous methods [Azzopardi

and Vinay, 2008b] in that they selected the most frequently occurring bigrams in

the collection while ignoring the most frequently occurring bigrams, considering

them as stop words that offer little or no discriminative value [Thaer Samar et al.,

2018]. This query generation technique was also followed by Traub et al [Traub

et al., 2016]. Samar’s anchor text method is a new approach to query set generation

that involves extracting anchor text terms for pages from external webpages. This

method is based on the notion that anchor text is often a concise and descriptive

piece of text about the destination page, thereby creating relevant queries for a page

[Thaer Samar et al., 2018].

Traub et al [Traub et al., 2016], in their analysis, utilized a real user query log,

which offers the advantage of reflecting the actual queries submitted by users in

the collection. This feature is particularly beneficial for studies that require the use

of query sets that resemble users’ search behavior. However, in the absence of a

real user log, it is often acceptable to generate queries automatically. Therefore,

the majority of studies have relied on automatically generated queries. Traub

compared the retrievability estimates provided by real queries with those generated

by simulation and found notable differences between the two query sets, particularly

in terms of how many unique terms are present and the use of named entities in

both the query sets. The real queries contained considerably more of both.

50

Pickens et al. [Pickens et al., 2010] present a noteworthy contribution in the form

of inventing reverted index, utilizing a simplified approach to query generation. The

authors establish a set of base queries for retrievability by extracting all terms that

appear in more than one document, as indicated by a document frequency greater

than one (df > 1).

The various techniques used for generating queries illustrate the diversity in

approaches taken to the initial stage of a retrievability analysis, highlighting the

absence of a well-defined structure for such an analysis. The query generation phase

is a critical aspect of retrievability work, with two primary concerns: the quality and

size of the query set. In terms of query quality, it is imperative that the generated

queries are neither overly discriminatory nor not sufficiently discriminatory, and are

generally suitable for the given collection. Failure to do so can lead to skewed results

and confounding of biases during the analysis. Furthermore, the query set must be

of sufficient size to yield a reasonably stable estimation of retrievability. Research

conducted byWilkie and Azzopardi indicates that eliminating too many queries from

the generated set in an attempt to increase efficiency can lead to skewed results,

particularly when the model has little bias to begin with [Wilkie and Azzopardi,

2014]. Therefore, the query set must be large enough to counteract the biases that

can arise due to automatic query generation.

3.4.2 IR System Configuration

After generating a suitable query set, the system under evaluation must be

configured. This process involves selecting a model and determining the hyper-

parameters associated with the model that align with the analytical requirements.

Researchers frequently conduct a retrievability analysis by sweeping the length

normalization parameter of a given retrieval algorithm [Azzopardi and Vinay,

2008b; Wilkie and Azzopardi, 2013a; Wilkie and Azzopardi, 2013b]. This stage

is elementary and primarily specifies the instantiating the system that is being

evaluated. Once the system is set up, queries are issued one by one, which is a

time-consuming step because of the large number of queries involved. The outcomes

of each query are recorded, and most systems allow for setting a rank cutoff that

specifies the depth of the ranking. Any documents ranked beyond the cutoff are

disregarded. It is crucial to set the cutoff high enough to compute retrievability at

51

the specified cutoff. As a result of this process, a ranked list of results is generated

for each query in the query set used.

3.4.3 Calculating document Retrievability and global

Retrievability

Upon recording the results of each query up to rank n, the process of calculating

document retrievability r(d) commences. A decision must be made regarding the

type of utility function to be employed to compute r(d), which is typically either

cumulative or gravity based. In the case of the cumulative based measure, only

the cutoff needs to be determined, specifying the rank at which a document must

appear in the rankings to accumulate more r(d) score. Conversely, in the case of

a gravity based measure, a decay function must also be established in addition to

the cutoff, which determines how much score is gained at each successive rank,

thereby affecting the measure’s sensitivity to results appearing further down the

ranking. Research by Wilkie and Azzopardi has revealed that these measures

are highly correlated [Wilkie and Azzopardi, 2013b], and that the selection and

configuration of the function primarily impacts the magnitude of differences between

r(d). This study also demonstrated that a variety of utility function configurations

all concurred on the setting that minimized retrievability bias when tuning a system’s

length normalization parameter to minimize bias. Similarly, a study by Bashir

and Rauber also confirmed Wilkie and Azzopardi’s findings that a cumulative

measure’s cut-off had a minimal impact on the overall Gini Coefficient [Bashir and

Rauber, 2010b]. Consequently, most subsequent studies report only one utility

function’s findings regarding r(d). Upon selection and configuration of the utility

function, the retrievability score, denoted by r(d), is computed for every document

in the collection. Subsequently, a list is generated, comprising of the document

and its corresponding retrievability score(s). This compilation can facilitate the

identification of documents with either excessive or inadequate retrievability [Bashir

and Rauber, 2009a; Bashir and Rauber, 2009b]. Moreover, it may be employed to

enhance the efficacy of pseudo relevance feedback [Bashir and Rauber, 2010a; Bashir

and Rauber, 2010b].

A visual or graphical approach to examining the imparity of accessibility

within document collections is to employ Lorenz Curves, a graphical representation

52

Figure 3.1: Lorenz Curve illustrated [Image: Wikipedia, 2023a]

commonly utilized in economics to depict the distribution of income among

populations, as demonstrated in figure 3.1.

This involves sorting the populace in an ascending manner based on their wealth,

followed by the generation of a graph that displays the cumulative distribution. In

a scenario where the distribution is equal, the line on the graph would be akin

to the Line of Equality. The measure of deviation of the distribution from the

Line of Equality is an indicator of its skewness. By substituting wealth with r(d),

this concept can be implemented in the analysis of retrievability, allowing for the

visualization of an IR system’s bias.

The next follow-up step involves assessing the degree of retrievability bias in a

system through the use of the Lorenz Curve is by estimating the Gini Coefficient.

However, Wilkie and Azzopardi investigated the impact of alternative inequality

metrics on retrievability bias calculations, since Gini Coefficient is just one of many

inequality metrics available [Gastwirth, 1971; Wilkie and Azzopardi, 2015]. Prior

to their study, Gini Coefficient was the only metric used to determine overall

retrievability bias. Therefore, the objective of their research was to determine

whether Gini Coefficient was a suitable metric, and whether other metrics offered

additional perspectives on bias. Using three parameterized retrieval models (BM25,

PL2, and LMD) on the Aquaint and .Gov collections, Wilkie and Azzopardi

53

calculated retrievability scores for each model and setting, then estimated system

retrievability bias using six inequality metrics. The authors found that these metrics

mostly agreed on which system and other settings minimized retrievability bias,

although there were differences in magnitude. Specifically, the Palma Index [Palma,

2011] and the 20:20 Ratio highlighted the magnitude difference between settings, but

were consistent with the Gini Coefficient and other measures. These findings were

replicated across the combinations of retrieval models and document collections.

Therefore, the authors recommended the continued use of the Gini Coefficient to

summarize retrievability bias, as the other metrics explored provided no compelling

reason to do otherwise. This work supported Azzopardi and Vinay’s choice of

inequality metric [Azzopardi and Vinay, 2008b], and indicated that prior research

was not compromised by its use of the Gini Coefficient.

The Gini-Coefficient G serves as a concise measure to encapsulate the

information presented by the Lorenz Curve. From the figure 3.1, G can be expressed

as the ratio of the regions enclosed by the curve, as written in equation 3.2. This

value can be determined using equation 3.3, where D represents the total number

of documents included within the collection [Gastwirth, 1971].

G =
A1

A1 + A2

(3.2)

G =

∑|D|
i=1(2 · i− |D| − 1) · r(di)
(|D| − 1)

∑|D|
j=1 r(dj)

(3.3)

The value of G lies within the range of 0 to 1. A value of 0 indicates an absence

of bias and implies that all documents have an equal chance of being retrieved.

Conversely, as the value of G increases, the level of bias in the retrieval system

towards the document collection utilized also increases, as stated in [Azzopardi and

Vinay, 2008b].

54

Chapter 4

Retrievability Experiments on

TREC 678 corpus

The main objective of the first semester’s experimentation for the masters thesis is

to investigate the retrievability bias for standard retrieval models using an improved

query set, then look into retrievability disparity between documents in Relevance

Judgement and documents otherwise, and finally explore the impact of query

expansion on retrievability of collection documents.

For the reproducibility and comparison with the original results of Azzopardi

and Vinay (2008) [Azzopardi and Vinay, 2008b], three different retrieval models are

chosen for the retrievability experiment which were part of their study as well. To

check the consistency of result for the retrieval models across collections, a different

corpus is selected. Selection of the corpus is partly based on availability of topic

file and relevance judgement, and similarity of the corpus with the corpus used by

Azzopardi and Vinay (2008) [Azzopardi and Vinay, 2008b].

The retrievability values of documents is used to investigated if the documents

selected for the relevance judgement is more retrievable than rest of the documents.

This can reveal bias in the relevance judgement. Finally, a selection of query

expansion method is made to do retrievability analysis on, to find out whether

query expansion increase or decrease retrieval bias.

This chapter covers the main experimental work performed in first semester of

this thesis and works on two of the goals are covered, goal-1 and goal-2. All the

methods, experiments and results are presented in this chapter itself.

55

4.1 Experimental Setup

4.1.1 Hardware and Operating System

For the experiments as well as document preprocessing, indexing, evaluations and

any other experiment related computation, two different systems with following main

specifications are used:

Desktop PC

• Intel Core i7-12700 12th Gen @ 2.1GHz

• 16 GB main memory

• Ubuntu 22.04.1 LTS (Jammy Jellyfish) - 5.15.0-56-generic Kernel

IISER Kolkata Dirac Supercomputer

• Intel Xeon Gold 6148 CPU @ 2.40GHz

• 128 GB main memory

• Rocks 7.0 Manzanita (CentOS 7.4)

All additional software and packages used are identical:

• Python 3.10

• PyLucene 8.8.1

• trec eval 9.0.7

• Pyserini 0.12.0

The packages listed above are not exhaustive and several other python packages

are used, which will be mentioned wherever they will be used. Details about the

use of these packages and any particular settings will be discussed along with the

experiment details in their respective subsections.

56

4.1.2 Dataset

TREC style collection is especially suitable because they feature Topics and their

relevance judgement Qrels, which is required to do a contrast study between

retrievability r(d) values of judged documents and rest of the documents.

The collection selected is the document collection used in TREC 2004 Robust

Track, often referred to as TREC 678 corpus. The document collection for the

Robust track is the set of documents on both TREC Disks 4 and 5 minus the the

Congressional Record on disk 4. 1

Source # Docs Size (MB)

Financial Times 210,158 564

Federal Register 94 55,630 395

FBIS, disk 5 130,471 470

LA Times 131,896 475

Total Collection: 528,155 1904

The size of the document collection is close to 2 GB with 528,155 text documents.

Vocabulary size of this corpus is close to 1.5 million.

For preparing the corpus for retrievals, it needs to be indexed first. Before

that, document IDs (DOCID) are identified using the XML tags and contents of a

document is rest of the text in the document except the XML tags. Now having

the contents of the documents and their doc-ids, Lucene (PyLucene2) is used with

the analyzer set as “EnglishAnalyzer” (which performs basic text preprocessing and

porter stemming) to index the corpus. Resulting index of the corpus created by

lucene is of the size 1.9 GB (notice that the corpus size was also about 1.9 GB) and

can be easily accessed using Lucene’s IndexReader and IndexSearcher classes.

1https://trec.nist.gov/data/robust/04.guidelines.html
2PyLucene is a python wrapper around the Java Lucene (https://lucene.apache.org/pylucene/).

Lucene is a Java library which provides indexing and search features, as well as other related
advanced functionalities (https://lucene.apache.org/)

57

https://trec.nist.gov/data/robust/04.guidelines.html
https://lucene.apache.org/pylucene/
https://lucene.apache.org/

4.1.3 Retrieval Models

TFIDF, Okapi BM25, Language Model with Dirichlet Smoothing (LMDir) with

µ = 1000 are selected for retrievability study of standard retrieval models, as these

retrieval models were also used by Azzopardi and Vinay in their 2008 research article

on Retrievability Azzopardi and Vinay, 2008b.

TFIDF is an old and classic IR model with no hyper-parameters. It is often

included in studies alongside with other models for standard comparison.

BM25 builds upon TFIDF way of scoring with better term-frequency and

document length normalization and is considered a strong baseline. BM25

has two paramters: k1 and b. Optimal paramters is selected from evaluations

against 250 topics of 678-robust: k1 = 0.7, b = 0.35.

LMDir Language Modelling using Dirichlet Smoothing is one of commonly used

IR models from language model retrieval functions. LMDir has a smoothing

parameter µ that is selected to be µ = 1000 in order to match with the prior

study Azzopardi and Vinay, 2008b.

All three retrieval algorithms are pre-implemented in Lucene. Therefore,

respective Lucene functions from Similarities class are used to perform the retrievals

for these retrieval models.

4.1.4 Model Effectiveness

Performance of each retrieval model on TREC 678 corpus with respective TREC

topics 6,7,8 and robust (250 queries) is evaluated using trec eval. In the table 4.1, a

few key performance metrics for the 3 algorithms are reported.

58

TREC 678 MAP MRR P@5 P@20

TFIDF 0.1561 0.5257 0.3598 0.2488

BM25 0.2596 0.6766 0.4988 0.3679

LMDir 0.2526 0.6774 0.4747 0.3600

Table 4.1: Mean Average Precision (MAP), Mean Reciprocal Rank (MRR),
Precision at 5 and 20 documents (P@5, P@20) with respect to their TREC queries

TFIDF performs significantly poorer than BM25 and LMDir. BM25 and

LMDir provides equivalent performance for TREC 678 corpus with respect to the

same testing query set. Later sections in the chapter show that despite similar

effectiveness, BM25 and LMDir differ in terms of their retrieval bias.

4.2 Large Scale Retrieval Simulation

Estimation of r(d) values for each document require a number of approximations

to be made. Same as the original study Azzopardi and Vinay, 2008b, generalized

utility/cost fucntion f(.) is taken as the simple binary function which just indicates

the presence or absence of a document in top ranks with cutoff c and the query

weight oq to be equal and constant by setting oq = 1. For each retrieval model, r(d)

values are computed over all the documents in the collection for 5 different rank

cutoffs: c = 10, 20, 30, 50, 100.

The next choice is the set of queries to be used. Since TREC collections are

test collections, availability of a user query log is not possible. Therefore, a set of

artificial queries need to be generated by some means. Azzopardi and Vinay (2008)

Azzopardi and Vinay, 2008b, for creating their query set, used uni-grams and bi-

grams sampled from the documents in the collection. All unigram queries were

terms in the vocabulary which occurred at least 5 times. All two term queries were

bigrams which occurred at least 20 times (if number of bigrams after frequency-

thresholding more than 2 million, bigrams are sorted by their frequencies and the

list is truncated at 2 million). Union of these two exclusive subsets of one term and

two term queries was their query set.

59

Using the above method, queries were generated for TREC 678 collection but

were found to be consisting a lot of undesirable terms, which are unlikely to be issued

by a user to an IR system, creating a noisy query set. Therefore, for constructing a

set of more realistic3 queries, a modified method is employed to filter out undesirable

queries as much as possible and will be discussed in the next subsection in detail.

4.2.1 Modified Query Generation Method

Types of queries (one term and two term queries), occurrence thresholds, and

truncation prescription is kept same as done by Azzopardi and Vinay (2008)

Azzopardi and Vinay, 2008b without exploring the impact of variation in these

choices to query set and retrievability analysis results.

Unigram Query Generation Method

Following are the steps:

1. All the tokens from lucene index of TREC 678 corpus is taken and all non-

alphabetical tokens are removed, giving only alphabetical words.

2. All words are then converted to lowercase and stopwords4 are removed.

3. This is the main step responsible for filtering unlikely queries. Part-of-

Speech tagging5 is done on words and then only Nouns (tag ’NOUN’) and

uncategorized (tag ’X’ for others) are selected and rest of the words with

other tags are removed. The reasoning behind such selection is that nouns

tend to represent majority of realistic queries and words such as of, which, its,

would often do not add meaning to the query or the information need of the

user. Below is a table of tags which are removed and their examples6 to help

put things in perspective.

3Here, a realistic query is such a query which looks close to what a real person might enter in
a search engine. For example, a query ”said to” is considered less realitic than a query ”United
Nations” . A more concrete notion could be derived from comparison with query logs, but is not
done here.

4NLTK English Stopword set
5nltk.tag.pos tag for universal tagset
6Taken from the NLTK book website: https://www.nltk.org/book/ch05.html

60

https://www.nltk.org/book/ch05.html

Tag Meaning English Examples

PRT particle out, per, with, on, that, up, at, over

ADJ adjective high, new, special, good, big, local

NUM numeral fourth, 14:24, twenty-four, 1991

ADP adposition with, by, under, at, on, of, into

VERB verb would, told, playing, given, is, say

DET determiner, article no, the, a, every, which, some, most

PRON pronoun its, my, her, us, I, he, their

CONJ conjunction but, or, although, while, if, and

ADV adverb already, really, early, still, now

4. Frequency of each unique word is counted and words with frequency less than

5 are removed.

5. Words with only one character i.e. all alphabets are removed from list.

6. Now, if the number of words left in the set are more than 2 million, words

are sorted by their frequencies in descending order and truncated the list at 2

million.

All the above steps are followed for TREC 678 collection and the constructed set of

words is considered to be the unigram queries, which will be posed to the IR system

as one term queries. Some examples from the set of unigram queries is presented in

Figure 4.1.

Bigram Query Generation Method

Following are the steps:

1. Content of each document are first blank-line tokenized7 (to avoid two blank-

line separated sentences, with the first sentence ending with no punctuation,

getting considered one sentence) and then Punkt sentence tokenization8 is

done to get the sentences from each document.

2. Each sentence from all the documents are then word tokenized. Same as

unigram query generation method, non-alphabetical tokens and stopwords are

7nltk.tokenize.regexp.blankline tokenize
8nltk.tokenize.sent tokenize

61

Figure 4.1: Examples from the generated unigram query set.

62

removed. All the remaining words are lowercased.

3. Pairs of consecutive words from each sentences from all the documents in the

collection are extracted as bigrams.

4. Again, as previously done for unigram query generation, Part-of-Speech

tagging is done for both the words in bigrams and then the bigrams having

both words tagged only as either ’NOUN’ or ’X’ is retained and rest of the

bigrams are discarded.9

5. Bigrams whose one of the word is just single character (an alphabet) is

removed.

6. Occurrence count of each bigram is done and bigrams with frequency less than

20 is removed.

7. Again, same as in the last step of unigram query generation method, if the

number of bigrams left in the set are more than 2 million, bigrams are sorted

by their frquencies in descending order and list is truncated at 2 million bigram

queries.

Following the above steps, bigram query set is generated from TREC 678

collection, which will be posed to the IR system as two term queries. Some examples

of bigrams in this set is given in Figure 4.2.

Query Set

Unigram queries and bigram queries together form the query set that is used for

retrievals. Below is the number of queries in the query set and in each subset:

No. of queries

Unigram queries 137,029

Bigram queries 447,183

Query Set 584,212

(Unigram + Bigram)

9When this step was omitted, bigrams like “said to”, “company of” (which is equivalent to
‘company’ and is part of unigram queries anyway), “come here” appeared which are considered to
be undesirable in this thesis.

63

Figure 4.2: Examples from the generated bigram query set.

4.2.2 Retrievals and document retrievability

A large scale retrieval simulation is conducted on the Desktop PC mentioned in

Section 4.1.1 by posing all the queries from the above query set and retrieving top

100 documents for each retrieval model. From the retrieval results, frequency of

each document for all the search results in top c = 10, 20, 30, 50 & 100 rank is

counted which gives the estimate of r(d) for each document d in the collection for

each retrieval model. Low c threshold would represent web search by users more

accurately, whereas, high c threshold would represent expert users in prior art search

or precedent retrieval jobs.

4.3 Trends in document retrievability

First observation from examining the r(d) values corresponding to any retrieval

model, is that some documents have retrievability score disproportionately high,

and on the contrast, many documents are not retrieved even once.

Following the Retrievability Analysis Framework described in Section 3.4, Lorenz

curve and Gini-coefficient is used to study the inequality in retrievability scores in

64

this huge collection of documents. Lorenz curve visualize the inequality whereas

Gini coefficient summarises the inequality in one single metric.

In the following subsections, Lorenz curve and Gini coefficient of r(d) for each

three retrieval models (TFIDF, BM25, LMDir) and each rank cutoff values c (10,

20, 30, 50 & 100) for TREC 678 collection is presented.

4.3.1 Lorenz Curves

Figure 4.3: Lorenz Curve for TFIDF model.

65

Figure 4.4: Lorenz Curve for BM25 model.

Figure 4.5: Lorenz Curve for LMDir model.

66

Figure 4.6: Lorenz Curve for TFIDF, BM25 and LMDir models for
c = 100.

67

4.3.2 Gini Coefficient

Table 4.2: Gini coefficient for all the retrieval models with different values of c for
TREC 678 collection. Pearson’s correlation coefficient ρ is calculated between r(d)
values of c = 10 and all other values of c. The relationship between all the pairs
of r(d) values is found to be statistically significant, thus verifying the stability of
retrievability measure with respect to the choice of c.

Figure 4.7: Plot of G vs c from the above table.

68

4.3.3 Observations

For all the retrieval models, Gini coefficient values slowly decrease as the value of c

increase. This suggests that the exposure of user to the search result bias decrease

as they look further down the rank list of search result. When c = N , where N

is the no. of document in the collection, Gini coefficient becomes zero (absolutely

no bias), because all the documents are retrieved all the time leading to equal r(d)

scores equal to number of queries. Whereas, if a user is only looking at a few top

documents returned by a retrieval model, then the user is exposed to greater bias

irrespective of the retrieval model.

BM25 is observed to induce least bias among the three retrieval models, whereas

LMDir induced highest bias. Previously in Section 4.1, BM25 and LMDir was found

to have equivalent performance; but now from looking at the Gini coefficient values

of both models, BM25 and LMDir are not at all similar in terms of the inequality

in retrievability of documents each of the model is inducing.

Another observation is that, as the c is increasing, Gini coefficient of TFIDF is

catching up with the lower G value of BM25. For c = 100, Gini coefficient of TFIDF

and BM25 is almost same, with BM25 still having a slightly lower value.

4.4 Bias in Relevance Judgement

The question is asked that whether the relevance judgement is also rigged with

retrievability bias. That is to say, if the documents present in the relevance

judgement have higher retrievability scores as compared to the documents which

have not been included in the relevance judgement.

To address this question, relevance judgement of TREC 678 topics 678-robust

(250 queries) is used. A set of document IDs present in the relevance judgement

is formed, and the set of rest of the document IDs is considered as non-judged

documents. Descriptive statistics of retrievability values r(d) for documents in the

relevance judgement and rest of the non-judged documents is calculated (see Table

4.3) and then inferences are drawn from them.

From the Table 4.3 and distribution plot , several observations can be made.

First, even though the number of judged documents are about half of the number of

69

0 500 1000 1500 2000 2500 3000
r(d)

100 100

101 101

102 102

103 103

104 104

105 105

Nu
m

be
r o

f d
oc

um
en

ts

Distribution of r(d) for Judged and Non-judged documents

Judged Documents
Non-judged Documents

Figure 4.8: Plot of count of documents on log-scale with r(d) values for set of
judged documents and set of non-judged documents. It can be observed that the
distribution for the judged documents in more dominated by numerous documents
of higher r(d) values, which clearly shows that the set of judged documents has
predisposition towards higher r(d) values.

Judged documents Non-judged documents

Count 174787 353368

Mean r(d) 131.03 80.15

Std r(d) 139.21 86.21

Min r(d) 0 0

Max r(d) 3220 1534

25% 39 24

50% 93 52

75% 177 106

Table 4.3: Descriptive Statistics for r(d) values (for BM25 with c = 100) of Judged
and Non-judged documents.

70

non-judged documents, mean r(d) of judged documents are significantly higher than

non-judged documents. This suggests that there are some documents in relevance

judgement which have very high retrievability scores which can be responsible for

increasing the mean. Max r(d) of judged documents is the overall highest r(d),

whereas Max r(d) of non-judged documents is almost half of Max r(d) of judged

documents. The minimum r(d) of both categories are zero, suggesting that judged

documents do not necessarily contain only those documents which are retrieved by

BM25. From the percentile information, it can be said that, although distribution

of r(d) of both judged and non-judged documents start from zero, r(d) values’

distribution is right shifted, with the shift increasing with increasing r(d).

The relevance judgement is tending to be biased towards more retrievable

documents, irrespective of the queries. This is a cause of concern because retrieval

model evaluations rely upon relevance judgements in the Cranfield paradigm. The

favoritism of relevance judgement towards documents with higher retrievability

scores means that retrieval models preferring highly retrievable documents will get

higher evaluation scores, due to which not only a retrieval model with higher bias will

be deemed better but also the performance metrics calculated using such relevance

judgement will be inaccurate; subsequently, if such a retrieval model is used to pool

documents for creating any new relevance judgement, then the bias in relevance

judgements will add up over time. Therefore, this observation of retrievability bias

in constituent documents of relevance judgement has implications for the document

pooling strategies devised or used to create relevance judgements.

4.5 Retrievability after RM3 Query Expansion

Investigation of the impact of query expansion on retrievability of documents and

overall retrievability bias is carried out for RM3 query expansion technique.

Initial retrieval is done using BM25 (with k1 and b parameters same as before).

RM3 is used to expand the queries with top 10 docs as pseudo-relevant docs, 10

expansion terms and original query weight = 0.4. Re-retrieval is performed again

using BM25 and final retrieval results are presented.

For large scale retrieval simulation for RM3, same query set is used as before.

Due to longer retrieval time taken by RM3, retrievals are run on IISER-Kolkata

71

Dirac Supercomputer and document retrievability values are estimated for all the 5

c rank cutoff values (10, 20, 30, 50 & 100).

Lorenz curve is plotted and Gini coefficient is calculated for all c values.

Figure 4.9: Lorenz Curve for BM25 + RM3 on TREC 678.

72

Table 4.4: Comparison between Gini coefficient calculated for BM25 and
BM25+RM3 on TREC 678. Pearson’s correlation coefficient ρ is also reported in
the similar combination as done in Table 4.2.

Figure 4.10: Plot of G vs c for BM25+RM3 search and BM25 search.

RM3 query expansion has increased retrievability bias. This suggests that

the process of adding more terms from top documents is leading to reduction

in retrievability of documents. Also, the decrease in Gini coefficient with c is

slower for BM25+RM3 than BM25. Although the RM3 is known for boosting

performance very well, the boost in retrievability bias that is coming along with

73

it is concerning. This observation also highlights that increase in bias doesn’t

always correlate with decrease in performance, and hence the relationship between

effectiveness and retrievability bias is non-trivial and not easily reducible to positive

or negative correlation.

74

Chapter 5

Comparing Query Sets for

Retrievability Analysis: Artificial

vs. Query Log-Based Queries

This chapter focuses on conducting a retrievability analysis on two corpora using

the BM25 retrieval model, employing different query sets. The first query set is

constructed using the AOL query log, while the second query set is generated using

the query generation method proposed by the original proposers of the retrievability

measure [Azzopardi and Vinay, 2008b] due to its widespread use in retrievability

literature. Additionally, a modified approach is employed to construct the last

query set, building upon the aforementioned method [Azzopardi and Vinay, 2008b].

Subsequently, a large-scale retrieval simulation is performed for each query set,

and retrievability scores are computed for all documents in the two collections

corresponding to those query sets.

The objective is to determine the correlation between the retrievability scores

obtained from artificially generated query sets and those derived from the query set

constructed from the query log. This analysis aims to ascertain whether artificially

generated queries yield similar retrievability scores to query log-based retrievability

scores, and whether artificial queries can serve as an acceptable substitute for real

user queries in retrievability analysis.

The results indicate a low or almost non-existent correlation between the

retrievability scores obtained from artificially generated queries and those derived

75

from the query log. Consequently, it can be inferred that artificially generated

queries do not yield retrievability scores similar to those derived from a query log.

Furthermore, the proposed modified approach demonstrates a higher correlation

with the query log-based retrievability scores, thereby representing a contribution

towards a more acceptable query generation method for retrievability analysis on

IR systems in situations where a historical query log is not available.

In summary, this chapter presents a retrievability analysis conducted on two

corpora using different query sets, employing the BM25 retrieval model. The study

compares retrievability scores derived from artificially generated queries with those

obtained from a query log, aiming to determine the suitability of artificial queries

for retrievability analysis. The findings reveal a lack of correlation between the

retrievability scores obtained from artificially generated queries and those derived

from the query log. Moreover, the proposed modified approach exhibits a higher

correlation with the query log-based retrievability scores, indicating its potential as

a more acceptable query generation method in the absence of a historical query log

for retrievability analysis on IR systems.

5.1 Dataset

We utilized two distinct datasets for our research: English Wikipedia articles and

the TREC WT10g collection. Additionally, we incorporated a publicly released

three-month query log from AOL dating back to the year 2006.

The English Wikipedia articles were obtained from a 2023 dump, providing us

with a larger and more recent dataset. This choice was made to ensure that we had

access to up-to-date information and a comprehensive representation of knowledge

present on the English Wikipedia platform.

In contrast, we included the TREC WT10g collection as it serves as an older web

corpus compared to the AOL query log. By incorporating this dataset, we aimed

to investigate whether the findings remain consistent when examining a smaller and

older corpus in comparison to a larger and more recent dataset. It is worth noting

that a specific overlap filter, which will be discussed later in the section 5.3, was

applied to ensure appropriate alignment between the corpus and query log.

76

The inclusion of both datasets allows us to explore potential variations in

correlations while accounting for the disparities between a modern, extensive corpus

and an older, more limited dataset. By establishing similar correlations across

these datasets, we can infer that our results are robust to the differences in corpus

characteristics and query logs.

Next, we will elaborate on the procedures and methodologies employed to

preprocess the selected datasets in order to extract required texts and draw reliable

conclusions in our study.

5.2 Corpus Preparation

In order to utilize the available corpora effectively for indexing and generating

queries, it is necessary to perform a process of cleaning and preprocessing. The

original form of both corpora is not suitable for direct use as plain English texts

due to the presence of noise and other inconsistencies. Therefore, in this section,

we will describe the specific preprocessing steps carried out for each collection. By

undertaking these necessary preparations, we aim to obtain noise-free English texts

that can be used for indexing purposes, as well as for generating queries from the

artificial query set. The subsequent subsections will provide detailed explanations

of the preprocessing methods employed for each corpus.

Wikipedia

Extracting plain text from Wikipedia dumps poses a significant challenge due to

the presence of wiki markdown syntax, Lua modules, and other complex syntactic

structures. Parsing through these intricacies to obtain the plain text content of each

article requires robust preprocessing techniques.

A commonly used tool for extracting plain text from regular Wikipedia dumps

is attardi/wikiextractor, which is publicly available on the Github; also

other such extractors are available: Wiki2Plain, WikiPrep, wikipedia2text,

mwparserfromhell, tatuylonen/wikiextract, libmwparser and others listed

at mediawiki.org/wiki/Alternative parsers. However, even with the aid of

wikiextractor tool, the resulting output still contains considerable noise and omits

77

https://www.mediawiki.org/wiki/Alternative_parsers

certain text contents due to inherent limitations in the extractor. Another type of

Wikipedia dump utilized by Cirrus Search of Wikipedia itself is already extensively

parsed and cleaned. Nevertheless, this dump lacks representative delimiters to

indicate the end of a heading or the start of a new paragraph, resulting in its own

limitations. Consequently, sections such as ’References’ and ’See also’ are included

in the extracted text, despite not belonging to the main content of the article.

To overcome these challenges and obtain the cleanest possible plain text extracts

from Wikipedia, we adopt an innovative approach. We combine both types of

unclean plain text extracts in a novel manner, leveraging one extract to eliminate

noise from the other extract and vice versa. By integrating these two sources,

we achieve a refined and noise-free plain text extract of Wikipedia articles. This

approach arguably yields the cleanest extraction method’s outputs when compared

to those of other publicly available extractors.

The method involves first cleaning Cirrus Wikipedia dump for equations

{\displaystyle...}, [...], {{...}} and navigation text from title. Then

wikiextractor’s extracted output was used to insert headings into cleaned Cirrus

output and remove texts starting sections like ‘References’ and ‘See also‘ which

are not desired to be the part of the final clean plain text of the articles. The

implementation details are available for open public use and reproducibility purposes

at the Github repository of this project. The final clean output of the Wikipedia

articles were indexed using PyLucene with EnglishAnalyzer().

WT10g

For the web collection WT10g, all the tags <...> and </...> were removed from the

documents within <DOC> and </DOC>. The cleaned output of the WT10g documents

were indexed using PyLucene with EnglishAnalyzer().

5.3 Real Query Set: AOL query log

The AOL query log refers to the dataset containing the search queries made by

users on the AOL search engine. It was a collection of anonymized user search data

collected over a three-month period in 2006. The AOL query log holds significant

78

advantages for the IR community. As one of the largest and most comprehensive

collections of search queries, it provides valuable insights into user behavior and

search patterns. Researchers and practitioners in the IR field can leverage this

dataset to analyze user intent, study query reformulation strategies, and improve

search engine algorithms. The AOL query log offers a rich source of data for training

and evaluating information retrieval models, enabling researchers to develop more

accurate and effective search techniques. Additionally, it allows for the identification

of emerging trends and the discovery of novel research directions, enhancing the

overall understanding of user information needs and preferences. In essence, the

AOL query log serves as a valuable resource that fuels advancements in the IR

community and contributes to the development of more efficient and user-centric

search systems.

To prepare the real query set, the initial step involved extracting all unique

queries from the AOL query log. Queries containing periods were eliminated

to effectively filter out website links. Subsequently, to ensure that only queries

answerable by the selected collection were included, queries were selected if all of

their terms were present in the corpus vocabulary. Upon analysis, it was observed

that queries with 20 or more tokens often comprised a substantial number of

nonsensical queries. Consequently, only queries with a token count below 20 were

considered for inclusion. These refined criteria resulted in the formation of the final

query set consisting of authentic queries. Table 5.1 presents the distribution of query

token counts and the corresponding number of queries for the final filtered queries

sourced from the AOL query log. Additionally, the table provides the total number

of queries encompassed within the final real query set.

5.4 Artificial Query Sets: Query Generation

The process of generating a comprehensive query set, denoted as Q, can be

theoretically defined as an exhaustive enumeration of all possible queries for a given

collection. However, due to the immense size of such a set, it becomes practically

infeasible to perform retrieval simulations using the available computational

resources. Moreover, the automatic generation of all potential queries for a collection

remains an unsolved problem in the existing literature. To address this challenge,

researchers [Azzopardi and Vinay, 2008b] in the field of retrievability measures have

79

Number of Tokens
in the Query

Frequency

Wikipedia WT10g

1 254647 236684

2 1411221 1384250

3 1519506 1506522

4 861411 855424

5 336884 334607

6 112751 111882

7 35281 34986

8 11585 11498

9 4282 4218

10 1693 1675

11 788 784

12 412 415

13 184 181

14 115 122

15 61 66

16 68 75

17 40 44

18 36 38

19 11 12

Total 4550976 4483483

Table 5.1: Distribution of Query Token Counts in the Final Filtered Queries from
AOL Query Log

proposed an alternative approach wherein they strive to generate queries for the

collection automatically. This query generation method has since been widely

adopted in subsequent studies [Bashir and Rauber, 2009a; Bashir and Rauber,

2009b; Pickens et al., 2010; Wilkie and Azzopardi, 2013a; Wilkie and Azzopardi,

2014; Wilkie and Azzopardi, 2015], enabling the construction of query sets used for

computing retrievability scores. In this study, we aim to investigate the impact

of using artificially-generated query sets, as opposed to real query sets, on the

retrievability scores obtained. By examining these differences, we can gain insights

into the efficacy of artificial query sets in substituting real query sets for retrievability

evaluation purposes. For this study, we generate a query set using original method

80

[Azzopardi and Vinay, 2008b] and then another artificial query set using a modified

method newly proposed in this thesis.

5.4.1 Azzopardi’s Query Generation Method

One commonly used approach for generating queries from a text collection is the

Azzopardi’s Query Generation Method, which involves the extraction of bigrams

followed by ranking and selection of the top bigrams to create a comprehensive

query set. This method was originally introduced by Azzopardi and Vinay in 2008,

building upon the approach outlined by Callan and Connel in 2001 [Azzopardi and

Vinay, 2008b; Callan and Connell, 2001].

The initial step in Azzopardi’s Query Generation Method is the extraction of

bigrams from the text collection. This is accomplished by implementing a sliding

window technique that traverses the text, identifying pairs of consecutively occurring

terms. Each bigram that appears a certain number of times is saved for further

processing. The specific thresholds for determining the minimum frequency of

appearance may vary depending on the application and dataset.

Once the bigrams have been extracted, they are then ranked using their

frequencies. After the ranking stage, the top x bigrams are selected to form a

sizeable query set. The value of x depends on various factors such as the size of

the collection, the intended purpose of the queries, and the available computational

resources. The selection of the top bigrams ensures that the generated queries

encompass the most relevant and significant terms or combinations of terms within

the collection.

In the original implementation by Azzopardi and Vinay, the query set consists

of both single-term queries and bi-term queries. Single-term queries are constructed

by taking each term in the vocabulary that occurs at least five times and posing

the term itself as a query. On the other hand, bi-term queries are constructed by

considering every pair of consecutively occurring terms (bigrams) in the collection

that occur at least 20 times. It is worth noting that the list of bigrams is typically

truncated at a certain threshold to control the size of the query set. In the specific

case mentioned, the truncation limit is set at 20 million.

Azzopardi’s Query Generation Method offers a systematic approach to generate

81

queries from a text collection. By leveraging the extraction of bigrams, frequency

ranking, and selection of top bigrams, this method provides a means to create a

comprehensive query set. The method can be customized and adapted by adjusting

the frequency thresholds, and the number of selected bigrams, allowing for flexibility

in its application.

In summary, Azzopardi and Vinay uses ‘Query-based Sampling’ Method for

query generation in the following manner [Azzopardi and Vinay, 2008b]:

• All Unigrams with tf ≥ 5

• 2 million Bigrams with tf ≥ 20

These unigrams and bigrams remaining upon filtration are used as the query set

for retrievability analysis.

5.4.2 Improved Query Generation Method

The identification of collocations within a text corpus can be achieved through

a straightforward counting approach, whereby the frequency of co-occurring word

pairs is examined. This technique provides evidence of words that possess a

distinct function, one that extends beyond a mere combination of their individual

meanings. However, the process of selecting the most frequent bigrams alone often

yields uninteresting results. Upon closer inspection, it becomes apparent that a

substantial portion of these bigrams consists of function words, offering limited

insights. To enhance the quality of identified collocations, a simple yet effective

heuristic was proposed by Justeson and Katz [Justeson and Katz, 1991]. This

heuristic involves subjecting candidate phrases to a part-of-speech filter, which

selectively retains patterns likely to represent genuine “phrases” rather than random

word combinations. Justeson and Katz specifically recommend certain tag patterns

for both bigrams and trigrams, enhancing the meaningfulness of the resulting

collocation identification process.

Therefore, to enhance the process of identifying collocations, we propose

to integrate Justeson and Katz’s part-of-speech filtering method into the query

generation approach. By incorporating this technique, we aim to selectively extract

82

the most ”query-like” N-grams, thereby improving the relevance and effectiveness

of the generated queries. Our improved method introduces the following additional

steps to the existing procedure:

1. Perform Part-of-Speech (POS) tagging on the collection documents: Initially,

we employ POS tagging on all the documents within the collection. This step

assigns appropriate grammatical tags to each word, facilitating the subsequent

identification of N-grams.

2. Extract N-grams from the POS-tagged documents: N-grams, where N

represents the desired length of the word sequences, are extracted from the

POS-tagged documents. In our case, we consider N to range from 1 to 4,

enabling the identification of unigrams, bigrams, trigrams, and quadgrams.

3. Select N-grams with “query-like” POS tag patterns: From the pool of

extracted N-grams, we apply Justeson and Katz’s recommended POS tag

patterns to filter and retain N-grams that exhibit patterns resembling queries.

The specific POS tag patterns for each N-gram type are provided in Table

5.3. Tag patterns for Quadgrams are proposed by us heuristically from our

observations.

Subsequently, the resulting list of N-grams is sorted in descending order based

on their occurrence frequencies. To ensure a manageable and relevant set of queries,

we truncate the list at specific thresholds. These thresholds are determined by

drawing inspiration from the frequency distribution of queries found in the AOL

query set. We aim to maintain a proportional ratio between the selected N-grams

and the query frequencies observed in the AOL based real query set, thus preserving

a close alignment with real-world query usage patterns. Refer to the table 5.2 for

the number of queries taken from each N-grams.

N-grams Unigrams Bigrams Trigrams Quadgrams Total

Frequency
Wikipedia 250,000 1,500,000 1,500,000 1,300,000 4,550,000

WT10g 250,000 1,400,000 1,500,000 1,350,000 4,500,000

Table 5.2: The frequency distribution for each N-grams in the Query Set created
using Improved Query Generation Method

83

Table 5.3: POS Tag Patterns for N-grams

Unigram Bigram Trigram Quadgram

NOUN ADJ NOUN ADJ ADJ NOUN NOUN VERB ADP NOUN

NOUN NOUN ADJ NOUN NOUN ADJ NOUN ADJ NOUN

NOUN ADJ NOUN NOUN ADP ADJ NOUN

NOUN NOUN NOUN NOUN NOUN ADP NOUN

NOUN ADP NOUN NOUN VERB NOUN NOUN

ADV ADJ NOUN NOUN

ADJ NOUN VERB NOUN

NOUN ADJ NOUN NOUN

5.5 Retrievability Experiment

The retrievability experiment was conducted using the BM25 retrieval model

[Stephen E. Robertson et al., 1992] on both corpora. The BM25 retrieval model

is a widely used information retrieval model that has shown effective performance in

various IR studies. For this experiment, default parameters were employed, namely

k1 = 1.2 and b = 0.75, in accordance with common practice in the field.

Retrievals were carried out separately for queries from the three query sets

summarized in the table 5.4. For each collection, the rank cutoffs were set at

c = 10, 20, 30, 50, and 100. Subsequently, the retrievability scores of all documents

in the collection were computed for each query set. The cumulative scoring model

of retrievability scoring was utilized to calculate these scores.

Real Query Set Artificial Query Sets

AOL queries Azzopardi’s method Proposed method

Wikipedia 4,550,976 5,320,001 4,550,000

WT10g 4,483,483 3,902,575 4,500,000

Table 5.4: Number of queries in each query set for Wikipedia and WT10g collections.

84

5.5.1 Parallelization in Lucene

Apache Lucene is used to perform BM25 retrievals on a large query set consisting of

millions of queries. Apache Lucene is an open-source information retrieval library

written in Java. It provides powerful indexing and search capabilities, making it a

widely used tool in various applications that require efficient and accurate searching

of large collections of documents. Lucene forms the core of many popular search

engines, including Elasticsearch and Solr. To speed up the experiment, the retrieval

process is parallelized, resulting in significant speed improvements when utilizing a

20-core i7 processor machine.

The parallelization is implemented using Java’s Fork/Join framework, specifically

the ForkJoinPool class. The ForkJoinPool is created with the number of available

processors minus one, allowing for efficient distribution of query retrieval tasks across

multiple threads. The main steps involved in the parallelization process are as

follows:

1. Loading the index and setting up the search environment:

• The Lucene index is opened using the IndexReader and DirectoryReader

classes, providing access to the indexed documents.

• An IndexSearcher is created, which will be used to perform the query

retrievals.

• The BM25 similarity model is set on the IndexSearcher using the

setSimilarity method, specifying the ranking formula parameters.

2. Splitting the query set into chunks:

• The list of queries is loaded from a JSON file.

• A method is used to divide the list of queries into smaller chunks, aiming

to distribute the workload evenly across threads.

3. Parallel retrieval of query chunks:

• A Progress Bar is initialized to track the progress of the query retrievals.

• The query chunks are processed in parallel using the parallelStream

method, which enables concurrent execution of the retrieval tasks.

85

• Each query in the chunk is processed by the retrieve method, which

performs the actual retrieval using Lucene.

• The progress bar is updated after each query retrieval using the a step()

method.

4. Saving the results:

• After all query chunks have been processed, the ForkJoinPool is shut

down and the program waits for the termination of all threads.

• The retrieved document counts are stored in a ConcurrentHashMap called

allRd, which keeps track of the retrieval results for different values of

parameter c (from the cList).

• The allRd object is serialized and saved to a JSON file using the Gson

library, allowing for further analysis and evaluation.

This parallelization approach in Lucene provides significant speed improvements

for processing large query sets. By distributing the retrieval tasks across multiple

threads, the code takes advantage of parallel processing capabilities, reducing the

overall execution time. The use of a ForkJoinPool enables efficient workload

distribution and synchronization, ensuring the proper execution and completion of

the parallel retrievals.

Anserini, a popular open-source information retrieval toolkit, also supports

parallel retrievals to improve performance. Anserini utilizes a different method

compared to the code provided. Instead of using the Fork/Join framework, Anserini

leverages multi-threading using Java’s ExecutorService and Callable interface. In

Anserini, the retrieval process involves creating a pool of worker threads using the

ExecutorService. Each worker thread is responsible for executing a retrieval task,

which involves querying the index and processing the results. The ExecutorService

handles the distribution of these tasks among the available threads. Both approaches

have their advantages and are suitable for different scenarios. Anserini’s method

with ExecutorService provides greater control over thread management, making it

more adaptable to complex retrieval scenarios. On the other hand, the Fork/Join

framework used in the provided code simplifies the parallelization process and is

well-suited for scenarios with uniform subtasks.

86

5.6 Correlation between Retrievability scores

from different Query Sets

In this section, we investigate the correlation between retrievability scores obtained

from two distinct query sets: the real query set based on the AOL query log, and the

artificial query set generated using Azzopardi’s method. Furthermore, we explore the

correlation between the retrievability scores of all documents from the real queries

and the scores derived from the artificial queries, employing a newly proposed

modified method. To examine these correlations, we employ various correlation

coefficients, which are presented in detail in result tables 5.5 and 5.6. By studying

the relationships between the scores obtained from different query sets, we aim to

gain insights into the robustness of the prior query generation method to act as an

substitute to query log.

Collection

Pearson’s correlation Spearman’s rank Kendall’s rank

coefficient correlation coefficient correlation coefficient

r ρ τ

Wikipedia 0.2379 0.5121 0.3603

WT10g 0.1100 0.5303 0.3731

Table 5.5: Correlation Coefficients between r(d) from AOL queries and Azzopardi’s
method generated artificial queries, both for c = 100.

Collection

Pearson’s correlation Spearman’s rank Kendall’s rank

coefficient correlation coefficient correlation coefficient

r ρ τ

QAzz Qnew QAzz Qnew QAzz Qnew

Wikipedia 0.2379 0.3065 0.5121 0.5893 0.3603 0.4194

WT10g 0.1100 0.3135 0.5303 0.5837 0.3731 0.4126

Table 5.6: Correlation Coefficients between r(d) from AOL queries vs Azzopardi
method generated artificial queries (QAzz) and r(d) from AOL queries vs proposed
method generated artificial queries (Qnew), both for c = 100.

87

5.7 Discussion

The findings of this study reveal a low correlation between the retrievability scores

of documents in the collection when using real-world AOL queries compared to

artificially generated queries using Azzopardi’s query generation method. This

indicates that Azzopardi’s method should not be employed as an approximation

for real-world queries in a retrievability analysis.

The low correlation between retrievability scores is an important observation,

as it raises doubts about the effectiveness and reliability of using artificially

generated queries to estimate document retrievability. Azzopardi’s method,

although theoretically sound, fails to capture the nuanced characteristics and

complexities of real-world queries, leading to a discrepancy in retrievability scores.

Consequently, relying solely on artificially generated queries may yield inaccurate

estimations and compromise the estimate of retrieval bias.

To address this limitation, the study proposes an improved method for generating

artificial queries that demonstrate an enhanced correlation with real-world queries in

terms of retrievability scores. This improvement suggests that there is potential for

refining query generation techniques to better align with the complexities inherent in

real-world queries. By adopting the proposed method, researchers and practitioners

can generate artificial queries that more accurately reflect the characteristics of

real-world queries, leading to improved retrievability estimations due to higher

correlation with r(d) from real queries.

While our improved method shows promise in enhancing the correlation between

retrievability scores, it is important to acknowledge that real-world query logs

remain the most reliable option for estimating retrievability. Real-world query logs

capture the actual queries issued by users in authentic information-seeking contexts,

providing a more accurate representation of retrieval performance.

In conclusion, this study highlights the limited correlation between retrievability

scores obtained from real-world queries and artificially generated queries using

Azzopardi’s method. This finding underscores the need for caution in relying solely

on artificial query sets to estimate retrievability accurately. While the proposed

improved method shows an enhanced correlation, real-world query logs remain

the gold standard for reliable retrievability estimation. Future research should

88

continue to explore and refine techniques for generating artificial queries, aiming

to bridge the gap between artificial and real-world queries to improve robustness of

the retrievability analysis and retrievability bias estimation.

89

Chapter 6

Correlation between Retrievability

and PageRank

This chapter delves into the investigation of the correlation between PageRank and

Retrievability, to achieve the final goal of this thesis [1.2]. The objective of this

undertaking is to explore the relationship between these two measures, necessitating

the selection of an appropriate corpus with an inter-page link structure that is also

topically diverse enough to facilitate variations in retrievability.

To fulfill this requirement, two distinct document collections have been chosen.

Firstly, Wikipedia, an extensive repository of knowledge covering a wide range of

topics, has been selected. Notably, Wikipedia articles contain references to other

Wikipedia articles, rendering it suitable for PageRank analysis. Secondly, the TREC

Web Corpus from the year 2000, specifically WT10g, has been utilized. This corpus

represents a snapshot of a subset of the World Wide Web (WWW) from the year

2000, making it an ideal candidate for conducting PageRank analysis on webpage

link graphs.

The methodology employed in obtaining the necessary in-links and out-links

information from these two corpora will be elucidated in this chapter. Additionally,

the computational challenges associated with performing a PageRank computation

on such large datasets will be discussed. Furthermore, the chapter will present

the PageRank algorithm employed, including the steps taken to address the

aforementioned challenges.

Finally, this chapter will conclude with a brief discussion on the observations

90

derived from the correlation of PageRank scores and the retrievability scores. These

findings will shed light on the relationship between PageRank and Retrievability,

contributing to a deeper understanding of the interplay between link analysis

algorithms and the retrievability of information in large-scale document collections.

6.1 Motivation

PageRank [Brin and Page, 1998], renowned for enhancing the quality of search

results in web search, has played a pivotal role in the success of Google as the

”default” search engine of choice for the masses since the early 2000s. This

algorithm, which assigns a measure of importance or usefulness to webpages, has

significantly influenced the way information is retrieved from the World Wide Web

(WWW).

Given the effectiveness of PageRank in improving search outcomes, it is

worth exploring whether Retrievability scores can serve as an alternative measure

of usefulness for documents within a corpus, much like PageRank does. By

investigating the correlation between PageRank document ranks and Retrievability

document ranks, this thesis aims to shed light on the potential interchangeability of

PageRank and Retrievability.

If a significant correlation is discovered between these two measures, it would

imply that Retrievability could serve as a viable replacement for PageRank. On the

other hand, a moderate correlation could suggest that the ranks obtained from both

PageRank and Retrievability may complement each other, potentially enhancing

search effectiveness when used together within the retrieval model. Understanding

the relationship between PageRank and Retrievability has the potential to refine the

retrieval models employed in search engines, leading to improved search outcomes

and a more efficient retrieval process. By evaluating the correlation between these

measures, valuable insights can be gained regarding their utility as measures of

document usefulness and their implications for enhancing search effectiveness.

Thus, the motivation behind this study lies in the desire to explore the potential

of Retrievability as a measure of document usefulness and to assess its correlation

with PageRank. The findings of this investigation contribute to the ongoing efforts

aimed at optimizing search effectiveness in large-scale document collections.

91

6.2 Methodology

In order to investigate the correlation between retrievability and PageRank in

Wikipedia, we employed a methodology that involved extracting relevant data from

publicly available monthly data dumps provided by Wikipedia. The data dumps

provide comprehensive information about the structure and relationships among

articles within the Wikipedia ecosystem. Specifically, we utilized three key tables

from the data dumps: the Page table, the Pagelinks table, and the Redirect table.

Each of these tables plays a crucial role in understanding the interlinking and

redirection patterns within Wikipedia.

Page table The Page table serves as the central repository of information regarding

individual pages within the MediaWiki installation. It contains entries for

every page, identifying them by their titles and providing essential metadata.

Notably, the actual content of each page is stored separately in the text

table. To retrieve the text of a specific article, the MediaWiki system initially

searches for the page’s title in the Page table. Upon locating the entry, it

then utilizes the associated page latest value to search the revision table for

the corresponding revision id. Subsequently, the revision text id is obtained,

which is used to search the text table and retrieve the actual text content. It

is important to note that when a page is deleted, its revisions are transferred

to the archive table for archival purposes.

Pagelinks Table The Pagelinks table plays a critical role in tracking all internal

links within the wiki. For every internal link present in a source page, an entry

is recorded in the Pagelinks table. Each entry includes the source page’s ID

and namespace, along with the article name and namespace of the target page

being linked to. While multiple instances of the source page’s ID may exist,

corresponding to the number of internal links within it, the table ensures a

unique entry for each internal link associated with any given page ID. It should

be noted that the target page referenced in the Pagelinks table may or may not

exist, and due to changes such as renames or deletions, it may refer to different

page records over time. This table was introduced in version 1.5 and combines

the information previously stored in the links table and the brokenlinks table

from version 1.4.

92

Redirect Table The Redirect table contains information about pages that

currently serve as redirects. It includes the ID of the source page and

details about the target page. It is worth mentioning that the database

dumps provided by Wikipedia and other Wikimedia projects, available

at https://dumps.wikimedia.org/, may have incomplete data in this table.

Specifically, only redirect pages created or edited after the summer of 2007

are present. For redirects created before that time, we relied on the Pagelinks

table to identify the appropriate target page.

6.2.1 Challenges and Resolutions

The computation of PageRank using the standard algorithm on the Wikipedia

dataset poses significant challenges due to the size of the dataset. The standard

algorithm loads the entire graph structure into primary memory, making it infeasible

to perform the computation on a normal personal laptop or desktop with RAM

capacity up to 16GB. The large graph leads to memory overflow, hindering the

efficient execution of the PageRank algorithm. To address this challenge, this thesis

proposes a solution that enables PageRank computation without the need to load

the entire graph into RAM.

The proposed solution involves the utilization of left and right column sorted

link files stored in secondary memory. These link files contain information about

which article (pageID) points to which other articles, with each entry recorded in

a single line. By employing this approach, the algorithm can iterate through the

sorted file one line at a time, updating the PageRank scores of the documents in an

iterative fashion.

This solution effectively overcomes the memory limitations of a typical personal

laptop or desktop by eliminating the need to load the entire graph into primary

memory. Instead, the algorithm accesses the necessary information from the sorted

link files stored in secondary memory. By processing the data in a sequential manner,

the PageRank computation can be performed with minimal memory requirements,

enabling the utilization of hardware resources with limited RAM capacity.

Furthermore, this approach offers scalability, as it allows the PageRank algorithm

to handle increasingly large datasets. By employing sorted link files, the algorithm

93

can efficiently process the dataset regardless of its size, as long as the available

secondary memory is sufficient to accommodate the sorted files.

It is worth noting that the utilization of sorted link files introduces additional I/O

operations compared to the standard algorithm. However, the overall performance

impact is mitigated by the avoidance of memory overflow and the ability to perform

the computation on hardware with limited RAM capacity. The trade-off between

increased I/O operations and improved memory utilization is deemed acceptable in

this context.

6.3 Algorithm

The given algorithm-1 implements the iterative PageRank algorithm for computing

the PageRank scores of nodes in a graph. The algorithm takes a left-sorted file and

a right-sorted file as input, which represent the edges of the graph. The algorithm

consists of two main functions: makeDictWithOutlinksCounts() and pagerank().

The makeDictWithOutlinksCounts() function reads the left-sorted file and

creates a dictionary called nodes_dict, which stores information about each node

in the graph. The dictionary contains the number of outlinks for each node, the

starting PageRank value, the current PageRank value, and a flag indicating whether

the node has incoming links. The function iterates over the lines of the file, extracts

the source and target nodes from each line, and updates the nodes_dict accordingly.

The pagerank() function performs the actual PageRank computation. It

receives the nodes_dict, which contains information about each node in the graph,

the right-sorted file that represents the edges of the graph, the damping factor

(d), the starting PageRank value (start_value), the precision for convergence

(precision), and the maximum number of iterations (max_iterations). This

function performs the iterative calculation of the PageRank scores for each node.

The function begins by initializing a tolerance value based on the specified precision,

which determines the level of convergence required for the algorithm to terminate.

It then enters a loop that executes for a maximum of max_iterations times or

until convergence is achieved. Within each iteration, the function traverses the lines

of the right-sorted file, extracting the incoming link and the corresponding target

node. This link represents an incoming connection to the target node from another

94

node in the graph. The function calculates the PageRank score for the target node

by summing the previous PageRank values of the incoming links and dividing it by

the number of outlinks of the source node.

To facilitate the alternating update of the PageRank values, the function employs

two indices: prev_pagerank_index and curr_pagerank_index. These indices

determine the position of the previous and current PageRank values within the

nodes_dict dictionary, allowing for the appropriate updating of the values. During

the iteration process, the function also checks for convergence by comparing the

difference between the current and previous PageRank values of each node with the

tolerance value. If the difference exceeds the tolerance, indicating that the PageRank

scores have not converged sufficiently, the flag variable is set to False. The function

further handles special cases related to the first iteration. It marks nodes with

incoming links as ”touched” by setting the corresponding flag in the nodes_dict

to True. Additionally, it initializes nodes that do not have any outgoing links by

adding them to the nodes_dict with appropriate default values. Upon completing

the iteration over the right-sorted file, the function sets the PageRank score of

”untouched” nodes (nodes without incoming links) to a value of (1− d). This step

ensures that nodes without incoming links receive a fraction of the damping factor

as their PageRank score. At the end of each iteration, the function updates the

nodes_dict with the newly calculated PageRank values for each target node. It

then evaluates the convergence status by checking the flag variable. If convergence

has been achieved for all nodes (i.e., if the flag is True), the iteration process is

terminated. Finally, the function returns the updated nodes_dict and the number

of iterations performed.

In summary, the algorithm reads the input files, initializes the necessary

data structures, performs iterative PageRank computations, and outputs the final

PageRank scores for each node. It employs a dictionary to store and update the

relevant information for each node, and it utilizes the left-sorted and right-sorted

files to calculate the PageRank scores based on incoming and outgoing links.

95

Algorithm 1: PageRank Computation (Part 1)

Function

PageRank(leftSortedLinkFile, rightSortedLinkFile, d, startV alue, precision,maxIterations):
Input : leftSortedLinkFile, rightSortedLinkFile, d, startV alue,

precision, maxIterations

Output: nodesDict, i

nodesDict←
makeDictWithOutlinksCounts(leftSortedLinkFile, startValue)

tol← 10−precision

for i← 1 to maxIterations do

prevPagerankIndex← (i− 1) mod 2 + 1

currPagerankIndex← i mod 2 + 1

flag ← True

prevToNode← None

forall line in rightSortedLinkFile do

inLink, currToNode← parseLine(line)

if prevToNode ̸= currToNode then

if prevToNode ̸= None then

pagerank ← (1− d) + d ∗ pagerank
nodesDict[prevToNode][currPagerankIndex]←
pagerank

if |nodesDict[prevToNode][currPagerankIndex]−
nodesDict[prevToNode][prevPagerankIndex]| ≥ tol

then

flag ← False

end

if i == 1 then

nodesDict[prevToNode][3]← True

end

end

pagerank ← 0

if currToNode /∈ nodesDict then
nodesDict[currToNode]←
[0, startV alue, startV alue, False]

end

end

prevPagerank ← nodesDict[inLink][prevPagerankIndex]

numOutlinks← nodesDict[inLink][0]

pagerank ← pagerank + prevPagerank/numOutlinks

prevToNode← currToNode

end

if prevToNode ̸= None then

pagerank ← (1− d) + d ∗ pagerank
nodesDict[prevToNode][currPagerankIndex]← pagerank

if

nodesDict[prevToNode][currPagerankIndex]− nodesDict[prevToNode][prevPagerankIndex] >

tol then

flag ← False

end

if i == 1 then

nodesDict[prevToNode][3]← True

end

end

if i == 1 then

forall node in nodesDict do

if nodesDict[node][3] == False then

nodesDict[node][prevPagerankIndex]← (1− d)

nodesDict[node][currPagerankIndex]← (1− d)

end

end

end

if flag == True then

break

end

end

return nodesDict, i

96

Algorithm 2: PageRank Computation (Part 2)

Function

makeDictWithOutlinksCounts(leftSortedLinkFile, startV alue):
Input : leftSortedLinkFile, startV alue

Output: nodesDict

nodesDict← ∅
prevFromNode← None

outlinksCount← 1

forall line in leftSortedLinkFile do

fromNode, toNode← parseLine(line)

if prevFromNode == None then

prevFromNode← fromNode

continue

if fromNode == prevFromNode then

outlinksCount← outlinksCount+ 1

else
nodesDict[prevFromNode]←
[outlinksCount, startV alue, startV alue, False]

outlinksCount← 1

prevFromNode← fromNode

if prevFromNode ̸= None then
nodesDict[prevFromNode]←
[outlinksCount, startV alue, startV alue, False]

return nodesDict

Function parseLine(line):
Input : line

Output: fromNode, toNode

fromNode, toNode← line.split(’�’)[: 2]
return fromNode, toNode

97

6.4 Results

Collection

Kendall’s rank Rank Biased Overlap

correlation coefficient measure

τ RBO

Qreal Qart Qreal Qart

Wikipedia 0.0896 0.1748 0.5343 0.5753

WT10g 0.0361 0.0391 0.5126 0.5095

Table 6.1: Correlation Coefficients between PageRank of documents vs r(d) from
AOL queries (Qreal) and the proposed improved query generation method created
artificial queries (Qart) for c = 100.

6.5 Discussion

The analysis conducted in this chapter aimed to investigate the correlation between

the ranks of documents based on PageRank scores and Retrievability scores within

the Wikipedia and WT10g corpora. The findings reveal a weak correlation between

these two measures for both datasets.

The weak correlation observed suggests that the ranks obtained from PageRank

and Retrievability do not align closely with each other. This implies that the two

measures capture different aspects of document importance or usefulness within the

corpus. While PageRank emphasizes the popularity and link structure of webpages,

Retrievability focuses on the accessibility and ease of retrieving information from

documents. The weak correlation between PageRank and Retrievability ranks

indicates that they are not directly interchangeable measures. Therefore, replacing

PageRank with Retrievability alone may not yield comparable results in terms

of search effectiveness. However, the modest correlation suggests that there may

be situations where the combination of PageRank and Retrievability ranks could

potentially enhance the overall search performance.

It is important to note that the weak correlation observed does not diminish

the value of either measure. PageRank continues to be an effective algorithm

98

for assessing the importance of webpages and improving search results. Similarly,

Retrievability scores provide insights into the accessibility and retrieval potential

of documents. The weak correlation merely suggests that these measures capture

different dimensions of document quality and usefulness. The observed weak

correlation may be attributed to various factors. Firstly, the underlying metrics used

in computing PageRank and Retrievability are distinct. PageRank relies on the link

structure and connectivity of webpages, while Retrievability is influenced by factors

such as document length, term frequency, and term distribution. These contrasting

factors contribute to the disparity in ranks obtained from the two measures.

Despite the weak correlation, the findings of this study provide valuable

insights into the interplay between PageRank and Retrievability. The contrasting

perspectives offered by these measures underscore the importance of considering

multiple dimensions of document importance and usefulness in search systems.

Future research can delve deeper into the specific factors influencing the weak

correlation and explore ways to leverage the combination of PageRank and

Retrievability to improve search effectiveness. In conclusion, the analysis conducted

in this chapter reveals a weak correlation between the ranks of documents based

on PageRank and Retrievability scores in both the Wikipedia and WT10g corpora.

This suggests that these measures capture different aspects of document importance

and usefulness. While they may not be directly interchangeable, their combination

holds potential for enhancing search effectiveness.

99

Chapter 7

Conclusion and Future Work

7.1 Conclusion

In conclusion, this thesis has addressed several critical issues in the field of

Information Retrieval (IR) systems and provided valuable insights into the

limitations and potential improvements of existing methodologies. Through

extensive research and analysis, a number of significant findings have been

uncovered, shedding light on the challenges and opportunities in this domain.

Firstly, a major flaw in the artificial query generation method for Retrievability

analysis has been identified. This flaw highlighted the need for a more robust and

reliable approach to accurately assess the retrievability of documents in IR systems.

In response to this, an improved method was proposed, which demonstrated a

notable enhancement in correlation, thus offering a more accurate measure of

document retrievability.

Moreover, an important discovery was made regarding a new kind of bias in

the Relevance Judgement process, which significantly affected the evaluation of

IR systems. This bias was found to favor highly retrievable documents, thereby

potentially skewing the results of relevance-based evaluations. Recognizing this

bias is crucial for ensuring fair and unbiased assessments of IR systems, and future

research should focus on developing strategies to mitigate its impact.

The thesis also explored the impact of employing the RM3 technique on

IR system performance. While RM3 demonstrated the ability to boost overall

100

performance, it was revealed that this enhancement came at the cost of making

unique relevant documents less findable. This finding emphasizes the importance of

carefully considering the trade-offs associated with different retrieval techniques and

highlights the need for further investigation into optimizing retrieval effectiveness

without sacrificing the retrieval of unique and relevant documents.

Additionally, a slight correlation was observed between document ranks

from PageRank and Retrievability measures. This finding suggests a potential

relationship between the two metrics and provides a basis for exploring their

interplay and mutual reinforcement in future research. Understanding the

connections between different evaluation methods can contribute to the development

of more comprehensive and effective IR systems.

Overall, this thesis has made contributions to the field of information retrieval

by uncovering important limitations and proposing improvements to existing

methodologies. The findings presented here underscore the complexity of IR systems

and emphasize the need for ongoing research and innovation to address the challenges

and enhance the effectiveness of these systems. By addressing the identified flaws

and biases, and by leveraging the potential correlations between different metrics,

future advancements in IR can lead to more reliable and efficient systems capable

of meeting the evolving needs of users in the ever-expanding world of information

retrieval.

7.2 Future Work

While this thesis has made recognisable progress in identifying and addressing

limitations in the current methods used for retrievability analysis and relevance

judgment-based evaluations of IR systems, there are several avenues for further

research and exploration. The following suggestions outline potential future work

that can build upon the findings and contribute to the improvement of search result

quality:

Investigating the Impact of the Proposed Improved Method

The thesis proposed an improved method for artificial query generation, which

demonstrated an enhancement in correlation. However, further investigation is

101

needed to thoroughly evaluate the effectiveness of this method across different

IR systems, datasets, and retrieval tasks. This analysis can provide insights

into the generalizability and robustness of the proposed approach.

Addressing Bias Towards Highly Retrievable Documents

The identification of bias towards highly retrievable documents in relevance

judgment has shed light on a previously overlooked aspect of IR evaluation.

Future work can focus on developing strategies to mitigate this bias and

improve the fairness and accuracy of relevance judgment-based evaluations.

This may involve the design of alternative relevance judgment mechanisms or

the incorporation of bias-aware models into the evaluation process.

Evaluating the Impact of RM3 on Finding Unique Relevant Documents

The observation that the use of RM3 can boost performance but potentially

hinder the findability of unique relevant documents warrants further investi-

gation. Future studies can delve deeper into understanding the underlying

reasons for this trade-off and explore modifications or alternative approaches

to RM3 that can mitigate its negative impact on finding unique relevant doc-

uments.

Exploring Retrievability for Search Result Quality Enhancement

Inspired by the success of PageRank in improving search result quality, future

work can focus on exploring how retrievability measures can be effectively

incorporated into ranking algorithms. Some correlation between document

ranks from PageRank and Retrievability has made us think that perhaps

Retrievability may be utilized as document information enrichness measure.

This can involve leveraging the retrievability as a usefulness measure to develop

modified retrieval models that enhance search result quality.

102

Bibliography

[Abdul-Jaleel, Allan, Croft, Diaz, Larkey, Li, Smucker, and Wade, 2004]

Abdul-Jaleel, N., Allan, J., Croft, W. B., Diaz, F., Larkey, L., Li, X., Smucker,

M. D., & Wade, C. (2004). Umass at trec 2004: Novelty and hard. Computer

Science Department Faculty Publication Series, 189.

[Azzopardi and Bache, 2010]

Azzopardi, L., & Bache, R. (2010). On the relationship between effectiveness

and accessibility. Proceedings of the 33rd international ACM SIGIR

conference on Research and development in information retrieval, 889–890.

[Azzopardi, English, Wilkie, and Maxwell, 2014]

Azzopardi, L., English, R., Wilkie, C., & Maxwell, D. (2014). Page

retrievability calculator. Advances in Information Retrieval: 36th European

Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April

13-16, 2014. Proceedings 36, 737–741.

[Azzopardi and Vinay, 2008a]

Azzopardi, L., & Vinay, V. (2008a). Document accessibility: Evaluating the

access afforded to a document by the retrieval system. Workshop on Novel

Methodologies for Evaluation in Information Retrieval, 52–60.

[Azzopardi and Vinay, 2008b]

Azzopardi, L., & Vinay, V. (2008b). Retrievability: An evaluation measure

for higher order information access tasks. Proceedings of the 17th ACM

conference on Information and knowledge management, 561–570.

[Azzopardi, Wilkie, Russell-Rose, Azzopardi, and Wilkie, 2013]

Azzopardi, L., Wilkie, C., Russell-Rose, T., Azzopardi, L., & Wilkie, C.

103

(2013). Towards measures and models of findability. Clarke et al.[19], 3–

4.

[Baeza-Yates, Ribeiro-Neto, et al., 1999]

Baeza-Yates, R., Ribeiro-Neto, B., et al. (1999).Modern information retrieval

(Vol. 463).

[Bailey, Craswell, and Hawking, 2003]

Bailey, P., Craswell, N., & Hawking, D. (2003). Engineering a multi-purpose

test collection for web retrieval experiments. Information Processing &

Management, 39 (6), 853–871.

[Bashir, 2014]

Bashir, S. (2014). Estimating retrievability ranks of documents using

document features. Neurocomputing, 123, 216–232.

[Bashir and Khattak, 2014]

Bashir, S., & Khattak, A. S. (2014). Producing efficient retrievability ranks

of documents using normalized retrievability scoring function. Journal of

Intelligent Information Systems, 42, 457–484.

[Bashir and Rauber, 2009a]

Bashir, S., & Rauber, A. (2009a). Analyzing document retrievability in

patent retrieval settings. Database and Expert Systems Applications: 20th

International Conference, DEXA 2009, Linz, Austria, August 31–September

4, 2009. Proceedings 20, 753–760.

[Bashir and Rauber, 2009b]

Bashir, S., & Rauber, A. (2009b). Identification of low/high retrievable

patents using content-based features. Proceedings of the 2nd international

workshop on Patent information retrieval, 9–16.

[Bashir and Rauber, 2009c]

Bashir, S., & Rauber, A. (2009c). Improving retrievability of patents with

cluster-based pseudo-relevance feedback documents selection. Proceedings of

the 18th ACM conference on Information and knowledge management, 1863–

1866.

104

[Bashir and Rauber, 2010a]

Bashir, S., & Rauber, A. (2010a). Improving retrievability and recall

by automatic corpus partitioning. Transactions on large-scale data-and

knowledge-centered systems II, 122–140.

[Bashir and Rauber, 2010b]

Bashir, S., & Rauber, A. (2010b). Improving retrievability of patents in prior-

art search. Advances in Information Retrieval: 32nd European Conference

on IR Research, ECIR 2010, Milton Keynes, UK, March 28-31, 2010.

Proceedings 32, 457–470.

[Bashir and Rauber, 2011]

Bashir, S., & Rauber, A. (2011). On the relationship between query

characteristics and ir functions retrieval bias. Journal of the American Society

for Information Science and Technology, 62 (8), 1515–1532.

[Bashir and Rauber, 2014]

Bashir, S., & Rauber, A. (2014). Automatic ranking of retrieval models using

retrievability measure. Knowledge and information systems, 41, 189–221.

[Bashir and Rauber, 2017]

Bashir, S., & Rauber, A. (2017). Retrieval models versus retrievability.

Current Challenges in Patent Information Retrieval, 185–212.

[Belew, 2000]

Belew, R. K. (2000). Finding out about: A cognitive perspective on search

engine technology and the www. Cambridge University Press.

[Belkin, 1980]

Belkin, N. J. (1980). Anomalous states of knowledge as a basis for information

retrieval. Canadian journal of information science, 5 (1), 133–143.

[Bennett, Scholer, and Uitdenbogerd, 2008]

Bennett, G., Scholer, F., & Uitdenbogerd, A. (2008). A comparative study

of probabilistic and language models for information retrieval. Database

Technologies 2008: Proceedings of the Nineteenth Australasian Database

Conference (ADC 2008), 65–74.

105

[Brin and Page, 1998]

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web

search engine. Computer networks and ISDN systems, 30 (1-7), 107–117.

[Buckley, Dimmick, Soboroff, and Voorhees, 2006]

Buckley, C., Dimmick, D., Soboroff, I., & Voorhees, E. (2006). Bias and the

limits of pooling. Proceedings of the 29th annual international ACM SIGIR

conference on Research and development in information retrieval, 619–620.

[Buckley, Dimmick, Soboroff, and Voorhees, 2007]

Buckley, C., Dimmick, D., Soboroff, I., & Voorhees, E. (2007). Bias and the

limits of pooling for large collections. Information retrieval, 10, 491–508.

[Buckley and Voorhees, 2004]

Buckley, C., & Voorhees, E. M. (2004). Retrieval evaluation with incomplete

information. Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, 25–32.

[Callan and Connell, 2001]

Callan, J., & Connell, M. (2001). Query-based sampling of text databases.

ACM Transactions on Information Systems (TOIS), 19 (2), 97–130.

[Chen, Azzopardi, and Scholer, 2017]

Chen, R.-C., Azzopardi, L., & Scholer, F. (2017). An empirical analysis

of pruning techniques: Performance, retrievability and bias. Proceedings of

the 2017 ACM on Conference on Information and Knowledge Management,

2023–2026.

[Cleverdon, 1991]

Cleverdon, C. W. (1991). The significance of the cranfield tests on

index languages. Proceedings of the 14th annual international ACM SIGIR

conference on Research and development in information retrieval, 3–12.

[Croft, Metzler, and Strohman, 2010]

Croft, W. B., Metzler, D., & Strohman, T. (2010). Search engines:

Information retrieval in practice (Vol. 520). Addison-Wesley Reading.

[Dewey, 1876]

Dewey, M. (1876). A classification and subject index, for cataloguing and

106

arranging the books and pamphlets of a library. Brick row book shop,

Incorporated.

[Flexer, Schnitzer, Gasser, and Pohle, 2010]

Flexer, A., Schnitzer, D., Gasser, M., & Pohle, T. (2010). Combining features

reduces hubness in audio similarity. Children, 15 (15.95), 4–07.

[Furnas, Landauer, Gomez, and Dumais, 1987]

Furnas, G. W., Landauer, T. K., Gomez, L. M., & Dumais, S. T. (1987).

The vocabulary problem in human-system communication. Communications

of the ACM, 30 (11), 964–971.

[Ganguly, Bandyopadhyay, Mitra, and Jones, 2016]

Ganguly, D., Bandyopadhyay, A., Mitra, M., & Jones, G. J. (2016).

Retrievability of code mixed microblogs. Proceedings of the 39th International

ACM SIGIR conference on Research and Development in Information

Retrieval, 973–976.

[Gasser, Flexer, and Schnitzer, 2010]

Gasser, M., Flexer, A., & Schnitzer, D. (2010). Hubs and orphans-an

explorative approach. Proceedings of the 7th Sound and Music Computing

Conference (SMC’10).

[Gastwirth, 1971]

Gastwirth, J. L. (1971). A general definition of the lorenz curve.

Econometrica: Journal of the Econometric Society, 1037–1039.

[Hajian, Bonchi, and Castillo, 2016]

Hajian, S., Bonchi, F., & Castillo, C. (2016). Algorithmic bias: From

discrimination discovery to fairness-aware data mining. Proceedings of the

22nd ACM SIGKDD international conference on knowledge discovery and

data mining, 2125–2126.

[D. Harman, 1993]

Harman, D. (1993). Overview of trec-1. Human Language Technology:

Proceedings of a Workshop Held at Plainsboro, New Jersey, March 21-24,

1993.

107

[D. K. Harman, 1993]

Harman, D. K. (1993). The first text retrieval conference (trec-1) (Vol. 500).

US Department of Commerce, National Institute of Standards; Technology.

[Jones, Walker, and Robertson, 2000]

Jones, K. S., Walker, S., & Robertson, S. E. (2000). A probabilistic model

of information retrieval: Development and comparative experiments: Part 2.

Information processing & management, 36 (6), 809–840.

[Jordan, Watters, and Gao, 2006]

Jordan, C., Watters, C., & Gao, Q. (2006). Using controlled query generation

to evaluate blind relevance feedback algorithms. Proceedings of the 6th

ACM/IEEE-CS joint conference on Digital libraries, 286–295.

[Justeson and Katz, 1991]

Justeson, J. S., & Katz, S. M. (1991). Co-occurrences of antonymous

adjectives and their contexts. Computational linguistics, 17 (1), 1–20.

[Kleinberg, 1999]

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment.

Journal of the ACM (JACM), 46 (5), 604–632.

[Lavrenko and Croft, 2017]

Lavrenko, V., & Croft, W. B. (2017). Relevance-based language models. ACM

SIGIR Forum, 51 (2), 260–267.

[Lipani, Lupu, Aizawa, and Hanbury, 2015]

Lipani, A., Lupu, M., Aizawa, A., & Hanbury, A. (2015). An initial analytical

exploration of retrievability. Proceedings of the 2015 International Conference

on The Theory of Information Retrieval, 329–332.

[Losada and Azzopardi, 2008]

Losada, D. E., & Azzopardi, L. (2008). An analysis on document length

retrieval trends in language modeling smoothing. Information Retrieval, 11,

109–138.

[Manning, Schütze, and Raghavan, 2008]

Manning, C. D., Schütze, H., & Raghavan, P. (2008). Introduction to

information retrieval (Vol. 39). Cambridge University Press Cambridge.

108

[Mowshowitz and Kawaguchi, 2005]

Mowshowitz, A., & Kawaguchi, A. (2005). Measuring search engine bias.

Information processing & management, 41 (5), 1193–1205.

[Noor and Bashir, 2015]

Noor, S., & Bashir, S. (2015). Evaluating bias in retrieval systems for recall

oriented documents retrieval. International Arab Journal of Information

Technology (IAJIT), 12 (1).

[Palma, 2011]

Palma, J. G. (2011). Homogeneous middles vs. heterogeneous tails, and the

end of the ‘inverted-u’: It’s all about the share of the rich. development and

Change, 42 (1), 87–153.

[Pickens, Cooper, and Golovchinsky, 2010]

Pickens, J., Cooper, M., & Golovchinsky, G. (2010). Reverted indexing

for feedback and expansion. Proceedings of the 19th ACM international

conference on Information and knowledge management, 1049–1058.

[Ponte and Croft, 2017]

Ponte, J. M., & Croft, W. B. (2017). A language modeling approach to

information retrieval. ACM SIGIR Forum, 51 (2), 202–208.

[Stephen E Robertson, 1977]

Robertson, S. E. [Stephen E]. (1977). The probability ranking principle in ir.

Journal of documentation.

[Stephen E. Robertson, Walker, Hancock-Beaulieu, Gull, and Lau, 1992]

Robertson, S. E. [Stephen E.], Walker, S., Hancock-Beaulieu, M., Gull, A.,

& Lau, M. (1992). Okapi at trec. TREC, 21–30.

[Rocchio Jr, 1971]

Rocchio Jr, J. J. (1971). Relevance feedback in information retrieval. The

SMART retrieval system: experiments in automatic document processing.

[Roelleke, 2013]

Roelleke, T. (2013). Information retrieval models. Foundations and

Relationships. Morgan & Claypool Publishers, USA.

109

[Roy, 2022]

Roy, D. (2022). Introduction to information retrieval [Course slide]. IISER

Kolkata.

[Sabetghadam, Lupu, Bierig, and Rauber, 2015]

Sabetghadam, S., Lupu, M., Bierig, R., & Rauber, A. (2015). Reachability

analysis of graph modelled collections. European Conference on Information

Retrieval, 9022, 370–381.

[Salton and Yang, 1973]

Salton, G., & Yang, C.-S. (1973). On the specification of term values in

automatic indexing. Journal of documentation.

[Thaer Samar, Traub, van Ossenbruggen, Hardman, and de Vries, 2018]

Samar, T. [Thaer], Traub, M. C., van Ossenbruggen, J., Hardman, L., &

de Vries, A. P. (2018). Quantifying retrieval bias in web archive search.

International Journal on Digital Libraries, 19, 57–75.

[TMH Samar, 2017]

Samar, T. [TMH]. (2017). Access to and retrievability of content in web

archives (Doctoral dissertation). [Sl: sn].

[Sanderson, 2008]

Sanderson, M. (2008). Ambiguous queries: Test collections need more sense.

Proceedings of the 31st annual international ACM SIGIR conference on

Research and development in information retrieval, 499–506.

[Sanderson and Joho, 2004]

Sanderson, M., & Joho, H. (2004). Forming test collections with no system

pooling. Proceedings of the 27th annual international ACM SIGIR conference

on research and development in information retrieval, 33–40.

[Singhal et al., 2001]

Singhal, A., et al. (2001). Modern information retrieval: A brief overview.

IEEE Data Eng. Bull., 24 (4), 35–43.

[Singhal, Salton, Mitra, and Buckley, 1996]

Singhal, A., Salton, G., Mitra, M., & Buckley, C. (1996). Document length

normalization. Information Processing & Management, 32 (5), 619–633.

110

[Sparck Jones, 1972]

Sparck Jones, K. (1972). A statistical interpretation of term specificity and

its application in retrieval. Journal of documentation, 28 (1), 11–21.

[Taha, 2015]

Taha, A. A. (2015). Bias, effizienz und hubness: Herausforderungen in der

anwendbarkeit von metriken. Ausgezeichnete Informatikdissertationen 2015.

[Traub, Samar, Van Ossenbruggen, He, de Vries, and Hardman, 2016]

Traub, M. C., Samar, T., Van Ossenbruggen, J., He, J., de Vries, A., &

Hardman, L. (2016). Querylog-based assessment of retrievability bias in

a large newspaper corpus. 2016 IEEE/ACM Joint Conference on Digital

Libraries (JCDL), 7–16.

[Turtle and Croft, 1992]

Turtle, H. R., & Croft, W. B. (1992). A comparison of text retrieval models.

The computer journal, 35 (3), 279–290.

[Van Rijsbergen, 1979]

Van Rijsbergen, C. (1979). Information retrieval: Theory and practice.

Proceedings of the joint IBM/University of Newcastle upon tyne seminar on

data base systems, 79.

[Vinay, Cox, Milic-Frayling, and Wood, 2006]

Vinay, V., Cox, I. J., Milic-Frayling, N., & Wood, K. (2006). Measuring the

complexity of a collection of documents. Advances in Information Retrieval:

28th European Conference on IR Research, ECIR 2006, London, UK, April

10-12, 2006. Proceedings 28, 107–118.

[Wikipedia, 2023a]

Wikipedia. (2023a). Lorenz curve — Wikipedia, the free encyclopedia

[[Online; accessed 08-May-2023]].

[Wikipedia, 2023b]

Wikipedia. (2023b). Rocchio algorithm — Wikipedia, the free encyclopedia

[[Online; accessed 08-May-2023]].

111

[Wikipedia, 2023c]

Wikipedia. (2023c). Vector space model — Wikipedia, the free encyclopedia

[[Online; accessed 07-May-2023]].

[Wilkie and Azzopardi, 2013a]

Wilkie, C., & Azzopardi, L. (2013a). An initial investigation on the

relationship between usage and findability. Advances in Information

Retrieval: 35th European Conference on IR Research, ECIR 2013, Moscow,

Russia, March 24-27, 2013. Proceedings 35, 808–811.

[Wilkie and Azzopardi, 2013b]

Wilkie, C., & Azzopardi, L. (2013b). Relating retrievability, performance

and length. Proceedings of the 36th international ACM SIGIR conference

on Research and development in information retrieval, 937–940.

[Wilkie and Azzopardi, 2014]

Wilkie, C., & Azzopardi, L. (2014). A retrievability analysis: Exploring the

relationship between retrieval bias and retrieval performance. Proceedings of

the 23rd ACM International Conference on Conference on Information and

Knowledge Management, 81–90.

[Wilkie and Azzopardi, 2015]

Wilkie, C., & Azzopardi, L. (2015). Retrievability and retrieval bias: A

comparison of inequality measures. Advances in Information Retrieval: 37th

European Conference on IR Research, ECIR 2015, Vienna, Austria, March

29-April 2, 2015. Proceedings 37, 209–214.

[Wilkie and Azzopardi, 2017]

Wilkie, C., & Azzopardi, L. (2017). An initial investigation of query expansion

bias. Proceedings of the ACM SIGIR International Conference on Theory of

Information Retrieval, 285–288.

[Witten, Witten, Moffat, Bell, Bell, Fox, and Bell, 1999]

Witten, I. H., Witten, I. H., Moffat, A., Bell, T. C., Bell, T. C., Fox, E., &

Bell, T. C. (1999). Managing gigabytes: Compressing and indexing documents

and images. Morgan Kaufmann.

[Zehlike, Bonchi, Castillo, Hajian, Megahed, and Baeza-Yates, 2017]

Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., & Baeza-Yates,

112

R. (2017). Fa* ir: A fair top-k ranking algorithm. Proceedings of the 2017

ACM on Conference on Information and Knowledge Management, 1569–

1578.

[Zhang, Zhu, and Greenwood, 2004]

Zhang, Y., Zhu, H., & Greenwood, S. (2004). Web site complexity metrics for

measuring navigability. Fourth International Conference onQuality Software,

2004. QSIC 2004. Proceedings., 172–179.

[Zobel, 1998]

Zobel, J. (1998). How reliable are the results of large-scale information

retrieval experiments? Proceedings of the 21st annual international ACM

SIGIR conference on Research and development in information retrieval,

307–314.

113

	List of Figures
	List of Tables
	Introduction
	Motivation
	Goal
	Outline

	Information Retrieval Fundamentals
	Information Retrieval System
	Definition
	IR Tasks
	Ad Hoc Retrieval

	Indexing
	Tokenization
	Normalization

	Retrieval Models
	Boolean Retrieval
	Vector Space Model
	Probabilistic Models
	Language Models

	Evaluation of IR Systems
	Effectiveness and Efficiency
	The Cranfield Paradigm
	Evaluation Measures

	Query Expansion
	Approaches
	Relevance Feedback
	Rocchio Algorithm
	Relevance Based Language Model

	PageRank

	Retrieval Bias and Retrievability
	Retrieval Bias
	Measuring Retrieval Bias
	Retrievability
	Retrievability Analysis Framework
	Query Set Generation
	IR System Configuration
	Calculating document Retrievability and global Retrievability

	Retrievability Experiments on TREC 678 corpus
	Experimental Setup
	Hardware and Operating System
	Dataset
	Retrieval Models
	Model Effectiveness

	Large Scale Retrieval Simulation
	Modified Query Generation Method
	Retrievals and document retrievability

	Trends in document retrievability
	Lorenz Curves
	Gini Coefficient
	Observations

	Bias in Relevance Judgement
	Retrievability after RM3 Query Expansion

	Comparing Query Sets for Retrievability Analysis: Artificial vs. Query Log-Based Queries
	Dataset
	Corpus Preparation
	Real Query Set: AOL query log
	Artificial Query Sets: Query Generation
	Azzopardi's Query Generation Method
	Improved Query Generation Method

	Retrievability Experiment
	Parallelization in Lucene

	Correlation between Retrievability scores from different Query Sets
	Discussion

	Correlation between Retrievability and PageRank
	Motivation
	Methodology
	Challenges and Resolutions

	Algorithm
	Results
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

